Computational Complexity

Lecture 0: Getting started

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

- What is Computational Complexity?

m The study of what you can compute with limited resources

m E.g.: time, memory space, random bits
but also: nondeterminism, oracles

m Computability theory studies what can be computed in principle

m Computational complexity theory studies what can be computed realistically

- What is Computational Complexity? (ct'd)

m Main methodology: distinguish different degrees of difficulty (complexity classes)

m There is an entire 'zoo’ of complexity classes:
https://www.complexityzoo.net/
(currently listing 546 classes)

m One central question: the P versus NP problem
(one of the $1M Millennium Prize Problems)

https://www.complexityzoo.net/

Model of computation

Turing machines

Definition (Turing machines; TMs)

Read only head

A Turing machine M is a tuple (I, Q,d), where:

m [is the alphabet: a finite set of symbols, [>[o]oJofo]o]o]o[o[o]o]o |\ |'0| o
including 0, 1, O (the blank symbol), Read/write head
and > (the start symbol) |>|1|1|0|1:|0||1|0|0|0|1| | I| I
m Q is a finite set of states, including a Readnre e :—

a designated halting state gy,
B QxTh = @xTk 1 x{LR,S}isa L L

transition function, for some k > 2 Register | 47 |

(the number of tapes of the machine)

|

I
designated start state gstart and | |,| ||| | [TTT1T1] ‘;| []

|

|

- Model of computation (ct'd)

Definition (TM computing a function)

A TM M computes the following (partial) function f, where for each x € X*:
m f(x) =y if M halts on input x with output y,
m f(x) = undefined if M does not halt on input x

Definition (running time)

Let M be a TM and g : N — N be a function. Then M runs in time g(n) if for each
input x € X" of length n, the machine M halts after (at most) g(n) steps.

m Note: we will switch (often implicitly) between
the conceptual level (“algorithms”)
and the fully formal level (“Turing machines”)

Asymptotic analysis

Big O notation

m Typically, we are interested in how (roughly)
the running time scales, not in all the details

m We use what is called asymptotic analysis For example
. 4n? 4+ 3n+ 10 is O(n?)
Definition (Big O)
Let f,g : N — N. We say that f is O(g) if there
exists a constant ¢ € N and an ng € N such
that f(n) < c- g(n) for all n > no.

Take c =8
and ng =4

m Note: in addition to “f is O(g)", the following
are also used: “f = O(g)", “f € O(g)",
“f(n)is O(g(n))", etc.

- Exercise session 1

m Big-O and little-o notation

m Describing algorithms at different abstraction levels

