Computational Complexity

Lecture 0: Getting started

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

What is Computational Complexity?

- The study of what you can compute with limited resources
- E.g.: time, memory space, random bits but also: nondeterminism, oracles
- Computability theory studies what can be computed in principle

■ Computational complexity theory studies what can be computed realistically

What is Computational Complexity? (ct'd)

■ Main methodology: distinguish different degrees of difficulty (complexity classes)

- There is an entire 'zoo' of complexity classes: https://www.complexityzoo.net/ (currently listing 546 classes)
- One central question: the \mathbf{P} versus NP problem (one of the \$1M Millennium Prize Problems)

Definition (Turing machines; TMs)
A Turing machine \mathbb{M} is a tuple (Γ, Q, δ), where:

- 「 is the alphabet: a finite set of symbols, including $0,1, \square$ (the blank symbol), and \triangleright (the start symbol)
- Q is a finite set of states, including a designated start state $q_{\text {start }}$ and a designated halting state $q_{\text {halt }}$
- $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k-1} \times\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}^{k}$ is a transition function, for some $k \geq 2$ (the number of tapes of the machine)

Model of computation (ct'd)

Definition (TM computing a function)

A TM \mathbb{M} computes the following (partial) function f, where for each $x \in \Sigma^{*}$:
■ $f(x)=y$ if \mathbb{M} halts on input x with output y,

- $f(x)=$ undefined if \mathbb{M} does not halt on input x

Definition (running time)

Let \mathbb{M} be a $T M$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function. Then \mathbb{M} runs in time $g(n)$ if for each input $x \in \Sigma^{n}$ of length n, the machine \mathbb{M} halts after (at most) $g(n)$ steps.

■ Note: we will switch (often implicitly) between the conceptual level ("algorithms") and the fully formal level ("Turing machines")

Asymptotic analysis
Big O notation

- Typically, we are interested in how (roughly) the running time scales, not in all the details

■ We use what is called asymptotic analysis

Definition (Big O)

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$. We say that f is $O(g)$ if there exists a constant $c \in \mathbb{N}$ and an $n_{0} \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$.

For example, $4 n^{2}+3 n+10$ is $O\left(n^{2}\right)$

Take $c=8$
and $n_{0}=4$

■ Note: in addition to " f is $O(g)$ ", the following are also used: " $f=O(g)$ ", " $f \in O(g)$ ", " $f(n)$ is $O(g(n))$ ", etc.

- Big-O and little-o notation

■ Describing algorithms at different abstraction levels

