
Computational Complexity

Lecture 0: Getting started

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

2024

What is Computational Complexity?

The study of what you can compute with limited resources

E.g.: time, memory space, random bits
but also: nondeterminism, oracles

Computability theory studies what can be computed in principle

Computational complexity theory studies what can be computed realistically

What is Computational Complexity? (ct’d)

Main methodology: distinguish different degrees of difficulty (complexity classes)

There is an entire ‘zoo’ of complexity classes:
https://www.complexityzoo.net/
(currently listing 546 classes)

One central question: the P versus NP problem
(one of the $1M Millennium Prize Problems)

https://www.complexityzoo.net/

Model of computation
Turing machines

Definition (Turing machines; TMs)

A Turing machine M is a tuple (Γ,Q, δ), where:
Γ is the alphabet: a finite set of symbols,
including 0, 1, � (the blank symbol),
and . (the start symbol)
Q is a finite set of states, including a
designated start state qstart and
a designated halting state qhalt
δ : Q × Γk → Q × Γk−1 × {L,R, S}k is a
transition function, for some k ≥ 2
(the number of tapes of the machine)

Model of computation (ct’d)

Definition (TM computing a function)

A TM M computes the following (partial) function f , where for each x ∈ Σ∗:
f (x) = y if M halts on input x with output y ,
f (x) = undefined if M does not halt on input x

Definition (running time)

Let M be a TM and g : N→ N be a function. Then M runs in time g(n) if for each
input x ∈ Σn of length n, the machine M halts after (at most) g(n) steps.

Note: we will switch (often implicitly) between
the conceptual level (“algorithms”)
and the fully formal level (“Turing machines”)

Asymptotic analysis
Big O notation

Typically, we are interested in how (roughly)
the running time scales, not in all the details

We use what is called asymptotic analysis

Definition (Big O)

Let f , g : N→ N. We say that f is O(g) if there
exists a constant c ∈ N and an n0 ∈ N such
that f (n) ≤ c · g(n) for all n ≥ n0.

Note: in addition to “f is O(g)”, the following
are also used: “f = O(g)”, “f ∈ O(g)”,
“f (n) is O(g(n))”, etc.

For example,
4n2 + 3n + 10 is O(n2)

Take c = 8
and n0 = 4

Exercise session 1

Big-O and little-o notation

Describing algorithms at different abstraction levels

