Computational Complexity

Lecture 0: Getting started

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

- The study of what you can compute with limited resources
 - E.g.: time, memory space, random bits but also: nondeterminism, oracles

- Computability theory studies what can be computed in principle
- Computational complexity theory studies what can be computed realistically

What is Computational Complexity? (ct'd)

- Main methodology: distinguish different degrees of difficulty (complexity classes)
 - There is an entire 'zoo' of complexity classes: https://www.complexityzoo.net/ (currently listing 546 classes)

 One central question: the P versus NP problem (one of the \$1M Millennium Prize Problems)

Model of computation

Turing machines

Definition (Turing machines; TMs)

A Turing machine \mathbb{M} is a tuple (Γ, Q, δ) , where:

- Γ is the *alphabet*: a finite set of symbols, including 0, 1, □ (the blank symbol), and ▷ (the start symbol)
- Q is a finite set of *states*, including a designated start state q_{start} and a designated halting state q_{halt}
- δ: Q × Γ^k → Q × Γ^{k-1} × {L, R, S}^k is a transition function, for some k ≥ 2 (the number of tapes of the machine)

Definition (TM computing a function)

A TM \mathbb{M} computes the following (partial) function *f*, where for each $x \in \Sigma^*$:

- f(x) = y if \mathbb{M} halts on input x with output y,
- f(x) = undefined if \mathbb{M} does not halt on input x

Definition (running time)

Let \mathbb{M} be a TM and $g : \mathbb{N} \to \mathbb{N}$ be a function. Then \mathbb{M} runs in time g(n) if for each input $x \in \Sigma^n$ of length *n*, the machine \mathbb{M} halts after (at most) g(n) steps.

 Note: we will switch (often implicitly) between the conceptual level ("algorithms") and the fully formal level ("Turing machines")

Asymptotic analysis Big O notation

- Typically, we are interested in how (roughly) the running time scales, not in all the details
- We use what is called asymptotic analysis

Definition (Big O)

Let $f, g : \mathbb{N} \to \mathbb{N}$. We say that f is O(g) if there exists a constant $c \in \mathbb{N}$ and an $n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

Note: in addition to "f is
$$O(g)$$
", the following are also used: " $f = O(g)$ ", " $f \in O(g)$ ", " $f(n)$ is $O(g(n))$ ", etc.

For example, $4n^2 + 3n + 10$ is $O(n^2)$

Take
$$c = 8$$

and $n_0 = 4$

- Big-O and little-o notation
- Describing algorithms at different abstraction levels