
Computational Complexity

Homework Sheet 3

Hand in via Canvas before May 14, 2024, at 23:59

https://canvas.uva.nl/courses/42595/assignments/496117

For this homework assignment, solve Exercises 1 and 2. In addition, choose exactly one of Exercises 3 and 4, and solve
it. This adds up to a total of 10 points that you can (maximally) obtain.

Exercise 1 (3pt). Define:

P/log =
⋃

c,d∈N
DTIME(nc)/(d log n).

That is, P/log is the class of all languages that can be decided in polynomial time with O(log n) bits of advice. Prove
that SAT 6∈ P/log, unless P = NP.

• Hint: iterate over all possible advice strings of length O(log n).

• Hint: you may assume that for any string x that represents a propositional formula ϕ and any truth assignment α
to (some of) the variables of ϕ, one can in polynomial-time encode the formula ϕ[α] as a string x′ that is of the
same length as x—where ϕ[α] is obtained from ϕ by instantiating each variable z in the domain of α by α(z).

Exercise 2 (3pt).

(a) Show that RP ⊆ NP.

(b) Show that ZPP = RP ∩ coRP.

– Hint: use Markov’s inequality for showing that ZPP ⊆ RP ∩ coRP. If X is a non-negative random variable
and a > 0, then:

P(X ≥ a) ≤ E(X)

a
.

Definition 1. Consider the following two complexity classes PNP[log] and PNP
|| :

• PNP[log] is the class of all decision problems L ⊆ {0, 1}∗ for which there exists a polynomial-time deterministic
oracle TM M and an oracle language O ∈ NP such that MO decides L, and a function f(n) : N → N that
is O(log n) such that for each input x ∈ {0, 1}∗, MO(x) makes at most f(|x|) queries to the oracle O.

• PNP
|| is the class of all decision problems L ⊆ {0, 1}∗ for which there exists a polynomial-time deterministic oracle

TM M and an oracle language O ∈ NP such that MO decides L, and for each input, MO makes their queries
to O in parallel.

Making parallel oracle queries works as follows. The machine M may write an arbitrary number of oracle queries
q1, . . . , qm ∈ {0, 1}∗ on the oracle tape, separated by a designated symbol # (i.e., q1#q2# · · · #qm). Then, when
the machine M enters the designated query state qquery ∈ Q, instead of transitioning into qyes or qno depending
on the answer of the oracle query, the machine transitions into a designated state qdone, and the contents of the
oracle tape are replaced by the string b1#b2# · · · #bm that represents the answers b1, . . . , bm ∈ {0, 1} to the oracle
queries (e.g., 0#1#1#0), where bi = 1 if and only if qi is in the oracle language O. The machine M is only allowed

1

https://canvas.uva.nl/courses/42595/assignments/496117

to make a single such combined query for each input x ∈ {0, 1}∗. In other words, it must compute (and write
down) all the oracle queries that it wants to make before getting an answer for any of them.

Exercise 3 (4pt). Prove that PNP[log] = PNP
|| .

• Hint: for showing that PNP
|| ⊆ PNP[log], choose an NP-complete oracle O, allowing you to solve different NP

problems by querying this single oracle—using the fact that for each L ∈ NP, there exists a polynomial-time
reduction from L to O.

Exercise 4 (4pt). Consider the following problem Overlapping-Sets. Inputs for this problem consist of a pair (U,S),
where U is a finite set (the universe) and S = {S1, . . . , Sm} is a set of subsets of U , i.e., Si ⊆ U for all 1 ≤ i ≤ m. A
subset C ⊆ S is a solution if for each Si, Sj ∈ C it holds that Si ∩ Sj 6= ∅.

Let ρ < 1. An algorithm A is called a ρ-approximation algorithm for Overlapping-Sets if for every input (U,S), the
algorithm outputs a solution C for (U,S) of size at least ρ · µ(U,S), where µ(U,S) is the size of the largest solution
for (U,S). A probabilistic algorithm A is called a probabilistic ρ-approximation algorithm for Overlapping-Sets if for
every input (U,S), the probability that the algorithm outputs a solution C for (U,S) of size at least ρ · µ(U,S) is at
least 2/3.

(a) Show that the decision variant of Overlapping-Sets is NP-complete—that is, the problem where the inputs consist
of (U,S) and k ∈ N, and the question is to decide if there exists a solution C for (U,S) of size k.

(b) Show that if there exist a polynomial-time ρ-approximation algorithm for Overlapping-Sets for some ρ < 1,
then P = NP.

– Hint: have a look at Section 11.4 of [1].

(c) Show that if there exist a polynomial-time probabilistic ρ-approximation algorithm1 for Overlapping-Sets for
some ρ < 1, then RP = NP.

– Hint: show that for any ρ < 1, it is NP-hard to decide if µ(U,S) = k, when given (U,S) and k as input, even
when one is promised that either µ(U,S) = k or µ(U,S) < ρ · k.

Remark 1. Answers will be graded on two criteria: they should (1) be correct and intelligent, and also (2) concise
and to the point.

Remark 2. If you find a solution to one of the exercises in a paper or book, you can use this to inform your solution.
Make sure that you write down the solution in your own words, conveying that you understand what is going on.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge University Press,
2009.

1That is, a probabilistic algorithm A for which there exists a polynomial p(n) such that the running time of A is bounded by p(n),
regardless of the random choices that it makes.

2

