Computational Complexity

Exercise Session 4

Note: These exercises are (likely) too much work to solve all during the exercise session.

Exercise 1. Prove that $L \subseteq P$.

Definition 1. We define DP to be the following complexity class:

 $\mathsf{DP} = \{ A \cap B \mid A \in \mathsf{NP}, B \in \mathsf{coNP} \}.$

Exercise 2.

- (a) Explain the difference between DP and the class $NP \cap coNP$.
- (b) Prove that $NP \cup coNP \subseteq DP$.
- (c) Prove that P = DP if and only if P = NP.
- (d) Prove that the following problem MAX-SAT is in DP:

Instance: A propositional formula φ in CNF and a positive integer $k \in \mathbb{N}$.

Question: Is the maximum number of clauses of φ that can be (simultaneously) satisfied by a truth assignment α exactly k?

Exercise 3. Consider the problem SINGLE-CYCLE, where the input consists of an undirected graph G = (V, E), and the question is to decide if G consists of one single cycle. Show that SINGLE-CYCLE is in L.