Computational Complexity

Exercise Session 2

Exercise 1. Show that coNP \subseteq EXP.

Exercise 2. Consider the following problem Reverse-3SAT:
Instance: A propositional formula φ in 3 CNF - that is, a formula of the form $\varphi=c_{1} \wedge \cdots \wedge c_{m}$, where each c_{j} is of the form $c_{j}=\ell_{j, 1} \vee \ell_{j, 2} \vee \ell_{j, 3}$, where $\ell_{j, 1}, \ell_{j, 2}, \ell_{j, 3}$ are propositional literals.

Question: Is there a truth assignment α to the variables occurring in φ that sets at least one literal in each clause c_{j} to false?

Prove that Reverse-3SAT is NP-complete - that is, prove that is in NP and that it is NP-hard. To show NP-hardness, you may give a reduction from any known NP-complete problem.

- Hint: reduce from 3SAT.

Exercise 3. Consider the following problem CLIQUE:
Instance: An undirected graph $G=(V, E)$, and a positive integer $k \in \mathbb{N}$.
Question: Does G contain a clique of size k-that is, is there a set $C \subseteq V$ of vertices with $|C|=k$ such that for each $v, v^{\prime} \in C$ with $v \neq v^{\prime}$ it holds that $\left\{v, v^{\prime}\right\} \in E$?
In this exercise, we will show that CLIQUE is NP-complete.
(i) Prove that CLIQUE is in NP.

To show that CLIQUE is NP-hard, we will give a polynomial-time reduction f from 3SAT to CLIQUE. We describe this reduction f as follows: for an arbitrary instance φ of 3SAT, we describe what the instance $f(\varphi)=(G, k)$ looks like.

Let $\varphi=c_{1} \wedge \cdots \wedge c_{m}$ be an arbitrary 3 CNF formula, containing propositional variables x_{1}, \ldots, x_{n}, where $c_{j}=$ $\ell_{j, 1} \vee \ell_{j, 2} \vee \ell_{j, 3}$ for each $1 \leq j \leq m$. Then we construct the graph $f(\varphi)$ as follows.

- We introduce vertices $v_{j, 1}, v_{j, 2}, v_{j, 3}$, for each $1 \leq j \leq m$. That is, for each clause c_{j} we add three vertices-one for each literal occurring in the clause.
- Two vertices $v_{j, l}$ and $v_{j^{\prime}, l^{\prime}}$ are connected with an edge if and only if $j \neq j^{\prime}$ and the literals $\ell_{j, l}$ and $\ell_{j^{\prime}, l^{\prime}}$ are not each other's negation.

Finally, we set $k=m$.
Let $\varphi_{\text {ex }}=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3} \vee \overline{x_{1}}\right)$ be an example 3CNF formula.
(ii) Let $f\left(\varphi_{\mathrm{ex}}\right)=\left(G_{\mathrm{ex}}, k_{\mathrm{ex}}\right)$. Compute k_{ex} and draw the graph G_{ex}.
(iii) Show that φ_{ex} is satisfiable. Use a satisfying assignment for φ_{ex} to produce a clique of size k_{ex} for G_{ex}.
(iv) Prove, for an arbitrary 3CNF formula φ, that φ is satisfiable if and only if $f(\varphi)=(G, k) \in$ CLIQUE.
(v) Explain why the function f is polynomial-time computable.

Exercise 4 (reduction from HamCycle to HamPath). Consider the following problem HamPath:
Instance: An undirected graph $G=(V, E)$, and two vertices $s, t \in V$.
Question: Is there a Hamiltonian path in G from s to t-in other words, a path from s to t that visits each vertex exactly once?
Consider also the following problem HamCycle:
Instance: An undirected graph $G=(V, E)$.
Question: Is there a Hamiltonian cycle in G-in other words, a cycle that visits each vertex exactly once?
Give a polynomial-time reduction from HamCycle to HamPath.

Exercise 5 (self-reducibility of 3SAT). Suppose that you have a polynomial-time algorithm A for (the decision problem) 3SAT. Show that you can use A to construct a polynomial-time algorithm B that, when given as input a 3CNF formula φ, outputs a satisfying assignment α for φ if such an assignment exists, and that outputs 0 otherwise.

