Computational Complexity

Lecture 9: Non-Uniform Complexity

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

May 11, 2021

What will we do today?

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem
- "Uniform": the algorithm is the same, regardless of the input size vs.
- "Non-uniform":
there can be different algorithms for different input sizes

Boolean circuits

- Boolean circuits are very similar to propositional formulas
- Directed acyclic graphs (instead of trees)

■ We view binary strings as truth assignments

■ Example: $\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right), x=010$, and $\alpha_{x}=\left\{x_{1} \mapsto 0, x_{2} \mapsto 1, x_{3} \mapsto 0\right\}$

Definition (Circuits)

An n-input single-output Boolean circuit C is a directed acyclic graph with:

- n sources (nodes with no incoming edges), labelled 1 to n, and
- one sink (a node with no outgoing edges).

All non-source vertices are called gates, and are labelled with \wedge, \vee, or \neg :

- \wedge-gates and \vee-gates have in-degree 2 (exactly two incoming edges),
- \neg-gates have in-degree 1 (exactly one incoming edge).

If C is an n-input single-output Boolean circuit and $x \in\{0,1\}^{n}$ is a string, then the output $C(x)$ of C on x is defined by plugging in x in the source nodes and applying the operators of the gates, and taking for $C(x)$ the resulting value in $\{0,1\}$ of the sink gate.

Definition (Circuit families)

Let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A $t(n)$-size circuit family is a sequence $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ of Boolean circuits, where each C_{n} has n inputs and a single output, and $\left|C_{n}\right| \leq t(n)$ for each $n \in \mathbb{N}$.

Definition $(\operatorname{SIZE}(t(n)))$

Let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A language $L \subseteq\{0,1\}^{*}$ is in $\operatorname{SIZE}(t(n))$ if there exists a constant $c \in \mathbb{N}$ and a $(c \cdot t(n))$-size circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ such that for each $x \in\{0,1\}^{*}$:

$$
x \in L \quad \text { if and only if } \quad C_{n}(x)=1, \text { where } n=|x|
$$

The complexity class P/poly

Definition ($\mathrm{P} /$ poly)

$$
\mathrm{P} / \text { poly }=\bigcup_{c \geq 1} \operatorname{SIZE}\left(n^{c}\right) .
$$

■ In other words, $\mathrm{P} /$ poly is the class of all decision problems that can be decided by a polynomial-size circuit family.

```
P\subseteqP/poly
```

- (We consider only decision problems $L \subseteq\{0,1\}^{*}$-i.e., binary alphabets.)

Theorem
 $\mathrm{P} \subseteq \mathrm{P} /$ poly.

- Main idea:
- Like in the proof of the Cook-Levin Theorem, we encode polynomial-time computation in logic
- Instead of using new, fresh variables we use nodes in the Boolean circuit (to encode tape contents, tape head positions, etc)

■ In fact, $\mathrm{P} \subsetneq \mathrm{P} /$ poly (you will show this in the homework)

Turing machines that take advice

- We can characterize $\mathrm{P} /$ poly (or more generally, non-uniform complexity classes) also using TMs
- The algorithm might differ per input size n, so we will have to give the TM something that depends only on the input size
- This is called advice

Definition $(\operatorname{TIME}(t(n)) / a(n))$

Let $t, a: \mathbb{N} \rightarrow \mathbb{N}$ be functions. The class $\operatorname{DTIME}(t(n)) / a(n)$ of languages decidable by $O(t(n))$-time Turing machines with a(n) bits of advice contains every decision problem $L \subseteq\{0,1\}^{*}$ such that:

- there exists a sequence $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ with $\alpha_{n} \in\{0,1\}^{a(n)}$ for each $n \in \mathbb{N}$ and an $O(t(n))$-time deterministic Turing machine \mathbb{M} such that for each $x \in\{0,1\}^{*}$:

$$
x \in L \text { if and only if } \mathbb{M}\left(x, \alpha_{n}\right)=1 \text {, where } n=|x|
$$

Advice characterization of $\mathrm{P} /$ poly (ct'd)

Theorem

$$
\mathrm{P} / \text { poly }=\bigcup_{c, d \geq 1} \operatorname{DTIME}\left(n^{c}\right) / n^{d} .
$$

- Main idea (for " \subseteq "):
- Use a description of C_{n} as α_{n}, and then compute $C_{n}(x)$ in polynomial time
- Main idea (for " \supseteq "):
- The computation of $\mathbb{M}\left(x, \alpha_{n}\right)$ on inputs $x \in\{0,1\}^{n}$ can be encoded as a polynomial-size circuit $D_{n}\left(\cdot, \alpha_{n}\right)$, using ideas from the proof of the Cook-Levin Thm
- The circuit C_{n} is D_{n} with α_{n} "hardwired in"

Definition

A circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ is P-uniform if there exists a polynomial-time deterministic TM that on input 1^{n} outputs a description of C_{n}, for each $n \in \mathbb{N}$.

Theorem

A decision problem $L \subseteq\{0,1\}^{*}$ is in P if and only if decidable by a P-uniform circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$.

The Karp-Lipton Theorem

- Question: is SAT decidable by polynomial-size circuits (is it in P/poly)?

■ Perhaps by allowing the algorithm to change per input size, this might work

- The answer: No (assuming that the PH does not collapse)

Theorem (Karp, Lipton 1980)

If $N P \subseteq P /$ poly, then $\sum_{2}^{p}=\Pi_{2}^{p}$.

- Suppose that $\mathrm{NP} \subseteq \mathrm{P} /$ poly.
- We show that then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{\mathrm{p}}$, by showing $\Pi_{2} S A T \in \Sigma_{2}^{\mathrm{p}}$.
- We use the following lemma to swap the order of the quantifiers:

Lemma

If $\mathrm{NP} \subseteq \mathrm{P} /$ poly, then there exists a polynomial-time algorithm that:

- takes polynomial-length advice, and
- given a propositional formula φ :
- if φ is unsatisfiable, it outputs 0 ;
- if φ is satisfiable, it outputs a satisfying truth assignment α for φ.
- Idea behind the proof of the lemma: use self-reducibility of SAT.
- Take an arbitrary instance of Π_{2} SAT: $\varphi=\forall \bar{u} \cdot \exists \bar{v} \cdot \psi(\bar{u}, \bar{v})$.

■ Let q be the polynomial bounding the size of the advice $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ that can be used to compute satisfying assignments for SAT, in polynomial time with TM \mathbb{M}.

- $\varphi=\forall \bar{u} \cdot \exists \bar{v} \cdot \psi(\bar{u}, \bar{v}) \in \Pi_{2}$ SAT if and only if for all $\bar{z} \in\{0,1\}^{m}, \psi[\bar{u} \mapsto \bar{z}] \in$ SAT.
- This is the case if and only if:
\exists there exists some $\bar{w} \in\{0,1\}^{q(n)}$ such that
\forall for all $\bar{z} \in\{0,1\}^{m}$
poly
\mathbb{M} uses $\bar{\omega}$ as advice to output the assignment γ on input $\psi[\bar{u} \mapsto \bar{z}]$ and γ satisfies $\psi[\bar{u} \mapsto \bar{z}]$

Key: we check that γ is correct; because we don't know whether \bar{w} is the right advice

■ Thus, $\Pi_{2} S A T \in \Sigma_{2}^{p}$, and therefore $\Pi_{2}^{p}=\Sigma_{2}^{p}$.

Recap

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem: if $N P \subseteq P /$ poly, then $\Sigma_{2}^{p}=\Pi_{2}^{p}$
- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

