Computational Complexity

Lecture 9: Non-Uniform Complexity

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

May 11, 2021

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem

"Uniform": the algorithm is the same, regardless of the input size vs.

• "Non-uniform": there can be different algorithms for different input sizes

- Boolean circuits are very similar to propositional formulas
- Directed acyclic graphs (instead of trees)
- We view binary strings as truth assignments

• Example:
$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3)$$
, $x = 010$,
and $\alpha_x = \{x_1 \mapsto 0, x_2 \mapsto 1, x_3 \mapsto 0\}$

Definition (Circuits)

An *n-input single-output Boolean circuit C* is a directed acyclic graph with:

- n sources (nodes with no incoming edges), labelled 1 to n, and
- one sink (a node with no outgoing edges).

All non-source vertices are called gates, and are labelled with $\land,\,\lor,$ or $\neg:$

■ ∧-gates and ∨-gates have in-degree 2 (exactly two incoming edges),

■ ¬-gates have in-degree 1 (exactly one incoming edge).

If C is an n-input single-output Boolean circuit and $x \in \{0,1\}^n$ is a string, then the output C(x) of C on x is defined by plugging in x in the source nodes and applying the operators of the gates, and taking for C(x) the resulting value in $\{0,1\}$ of the sink gate.

Definition (Circuit families)

Let $t : \mathbb{N} \to \mathbb{N}$ be a function. A t(n)-size circuit family is a sequence $\{C_n\}_{n \in \mathbb{N}}$ of Boolean circuits, where each C_n has n inputs and a single output, and $|C_n| \le t(n)$ for each $n \in \mathbb{N}$.

Definition (SIZE(t(n)))

Let $t : \mathbb{N} \to \mathbb{N}$ be a function. A language $L \subseteq \{0,1\}^*$ is in SIZE(t(n)) if there exists a constant $c \in \mathbb{N}$ and a $(c \cdot t(n))$ -size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that for each $x \in \{0,1\}^*$:

 $x \in L$ if and only if $C_n(x) = 1$, where n = |x|.

Definition (P/poly)

$$\mathsf{P}/\mathsf{poly} = \bigcup_{c \ge 1} \mathsf{SIZE}(n^c).$$

In other words, P/poly is the class of all decision problems that can be decided by a polynomial-size circuit family.

$\mathsf{P}\subseteq\mathsf{P}/\mathsf{poly}$

• (We consider only decision problems $L \subseteq \{0,1\}^*$ —i.e., binary alphabets.)

Theorem	i .
$P \subseteq P/poly.$	

- Main idea:
 - Like in the proof of the Cook-Levin Theorem, we encode polynomial-time computation in logic
 - Instead of using new, fresh variables we use nodes in the Boolean circuit (to encode tape contents, tape head positions, etc)

• In fact, $P \subsetneq P/poly$ (you will show this in the homework)

 We can characterize P/poly (or more generally, non-uniform complexity classes) also using TMs

- The algorithm might differ per input size n, so we will have to give the TM something that depends only on the input size
- This is called advice

Definition (TIME(t(n))/a(n))

Let $t, a : \mathbb{N} \to \mathbb{N}$ be functions. The class DTIME(t(n))/a(n) of languages decidable by O(t(n))-time Turing machines with a(n) bits of advice contains every decision problem $L \subseteq \{0, 1\}^*$ such that:

• there exists a sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{a(n)}$ for each $n\in\mathbb{N}$ and an O(t(n))-time deterministic Turing machine \mathbb{M} such that for each $x\in\{0,1\}^*$:

 $x \in L$ if and only if $\mathbb{M}(x, \alpha_n) = 1$, where n = |x|.

Advice characterization of P/poly (ct'd)

Theorem

$$\mathsf{P}/\mathsf{poly} = \bigcup_{c,d \ge 1} \mathsf{DTIME}(n^c)/n^d.$$

- Main idea (for "⊆"):
 - Use a description of C_n as α_n , and then compute $C_n(x)$ in polynomial time
- Main idea (for "⊇"):
 - The computation of $\mathbb{M}(x, \alpha_n)$ on inputs $x \in \{0, 1\}^n$ can be encoded as a polynomial-size circuit $D_n(\cdot, \alpha_n)$, using ideas from the proof of the Cook-Levin Thm
 - The circuit C_n is D_n with α_n "hardwired in"

Definition

A circuit family $\{C_n\}_{n\in\mathbb{N}}$ is P-uniform if there exists a polynomial-time deterministic TM that on input 1^n outputs a description of C_n , for each $n \in \mathbb{N}$.

Theorem

A decision problem $L \subseteq \{0,1\}^*$ is in P if and only if decidable by a P-uniform circuit family $\{C_n\}_{n \in \mathbb{N}}$.

- Question: is SAT decidable by polynomial-size circuits (is it in P/poly)?
 - Perhaps by allowing the algorithm to change per input size, this might work
- The answer: No (assuming that the PH does not collapse)

Theorem (Karp, Lipton 1980)

If NP \subseteq P/poly, then $\Sigma_2^p = \Pi_2^p$.

Proof of the Karp-Lipton Thm The general argument

- Suppose that NP \subseteq P/poly.
- $\blacksquare \text{ We show that then } \Pi_2^p \subseteq \Sigma_2^p \text{, by showing } \Pi_2 \mathsf{SAT} \in \Sigma_2^p.$
- We use the following lemma to swap the order of the quantifiers:

Lemma

If NP \subseteq P/poly, then there exists a polynomial-time algorithm that:

- takes polynomial-length advice, and
- given a propositional formula φ :
 - if φ is unsatisfiable, it outputs 0;
 - if φ is satisfiable, it outputs a satisfying truth assignment α for φ .
- Idea behind the proof of the lemma: use self-reducibility of SAT.

Proof of the Karp-Lipton Thm Completing the proof

- Take an arbitrary instance of $\Pi_2 SAT$: $\varphi = \forall \overline{u} . \exists \overline{v} . \psi(\overline{u}, \overline{v})$.
- Let q be the polynomial bounding the size of the advice {α_n}_{n∈ℕ} that can be used to compute satisfying assignments for SAT, in polynomial time with TM M.
- $\varphi = \forall \overline{u}. \exists \overline{v}. \psi(\overline{u}, \overline{v}) \in \Pi_2 \text{SAT}$ if and only if for all $\overline{z} \in \{0, 1\}^m$, $\psi[\overline{u} \mapsto \overline{z}] \in \text{SAT}$.
- This is the case if and only if:

$$\exists \quad$$
 there exists some $\overline{w} \in \{0,1\}^{q(n)}$ such that

igvee for all $\overline{z} \in \{0,1\}^m$

 $\begin{array}{l} \text{poly} \quad \overset{\mathbb{M}}{\underset{\text{on input } \psi[\overline{u} \mapsto \overline{z}] \text{ and } \gamma \text{ satisfies } \psi[\overline{u} \mapsto \overline{z}] \end{array} } \end{array}$

Key: we check that γ is correct; because we don't know whether \overline{w} is the right advice

• Thus, $\Pi_2 SAT \in \Sigma_2^p$, and therefore $\Pi_2^p = \Sigma_2^p$.

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- \blacksquare The Karp-Lipton Theorem: if NP \subseteq P/poly, then $\Sigma_2^p=\Pi_2^p$

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP