Computational Complexity

Lecture 7: the Polynomial Hierarchy

Ronald de Haan me@ronalddehaan.eu

University of Amsterdan

Recap What we saw last time...

- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE
- Logspace reductions
- NL-completeness

What will we do today?

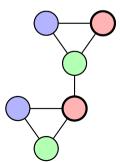
- The Polynomial Hierarchy
- Bounded quantifier alternation
- Alternating Turing machines

Example problem

■ We saw that 3COL is NP-complete, but how about the following problem?

3COL-Extension =
$$\{ (G, V_0) \mid G = (V, E) \text{ is an undirected graph, } V_0 \subseteq V, \text{ and each 3-coloring of the vertices in } V_0 \text{ can be extended to a proper 3-coloring of the entire graph } G \}$$

- There seems to be no single (polynomial-size) certificate for yes-inputs
- It is a "∀∃-type" question
- We need a different complexity class to capture the complexity of 3COL-Extension



The complexity class Σ_2^{p}

Definition (NP)

A language $L \subseteq \{0,1\}^*$ is in the class NP if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

 $x \in L$ if and only if there exists some $u \in \{0,1\}^{q(|x|)}$ such that $\mathbb{M}(x,u) = 1$.

Definition (coNP)

A language $L\subseteq\{0,1\}^*$ is in the class coNP if there is a polynomial $q:\mathbb{N}\to\mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x\in\{0,1\}^*$:

$$x \in L$$
 if and only if for all $u \in \{0,1\}^{q(|x|)}$ it holds that $\mathbb{M}(x,u) = 1$.

The complexity class Σ_2^p

Definition (Σ_2^p)

A language $L \subseteq \{0,1\}^*$ is in the class Σ_2^p if there is a polynomial $q: \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

$$x \in L$$
 if and only if there exists $u_1 \in \{0,1\}^{q(|x|)}$ such that for all $u_2 \in \{0,1\}^{q(|x|)}$ it holds that $\mathbb{M}(x,u_1,u_2)=1$.

The complexity class Π_2^p

Definition (Π_2^p)

A language $L \subseteq \{0,1\}^*$ is in the class Σ_2^p if there is a polynomial $q: \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

$$x \in L$$
 if and only if for all $u_1 \in \{0,1\}^{q(|x|)}$ there exists $u_2 \in \{0,1\}^{q(|x|)}$ such that $\mathbb{M}(x,u_1,u_2)=1$.

■ It turns out that 3COL-Extension is Π_2^p -complete.

The complexity classes Σ_i^p

Definition (Σ_i^p)

Let $i \geq 1$. A language $L \subseteq \{0,1\}^*$ is in the class Σ_i^p if there is a polynomial $g: \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine M such that for every $x \in \{0,1\}^*$:

and a polynomial-time Turing machine
$$\mathbb{M}$$
 such that for every $x \in \{0,1\}^*$: $x \in L$ if and only if there exists $u_1 \in \{0,1\}^{q(|x|)}$ such that for all $u_2 \in \{0,1\}^{q(|x|)}$

for all
$$u_i \in \{0,1\}^{q(|x|)}$$
 it holds that $\mathbb{M}(x,u_1,\ldots,u_i)=1$.

if *i* is even.

there exists
$$u_i \in \{0,1\}^{q(|x|)}$$
 such that $\mathbb{M}ig(x,u_1,\ldots,u_iig)=1.$ if i is odd.

The complexity classes Π_i^p

Definition (Π_i^p)

Let $i \geq 1$. A language $L \subseteq \{0,1\}^*$ is in the class Π_i^p if there is a polynomial $q: \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \{0,1\}^*$:

and a polynomial-time Turing machine
$$\mathbb{M}$$
 such that for every $x \in \{0,1\}^*$:
$$x \in L \quad \text{if and only if} \quad \text{for all } u_1 \in \{0,1\}^{q(|x|)} \\ \quad \text{there exists } u_2 \in \{0,1\}^{q(|x|)} \text{ such that}$$

$$\vdots \\ \quad \text{for all } u_i \in \{0,1\}^{q(|x|)}$$

it holds that $\mathbb{M}(x,u_1,\ldots,u_i)=1.$ if i is odd, \vdots

there exists
$$u_i \in \{0,1\}^{q(|x|)}$$
 such that $\mathbb{M}(x,u_1,\ldots,u_i)=1.$ if i is even.

The Polynomial Hierarchy (PH)

Definition $(\Sigma_0^p, \Pi_0^p, PH)$

$$\Sigma_0^p = \Pi_0^p = P$$
 $PH = \bigcup_{i>0} \Sigma_i^p$.

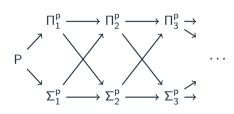
■ Some relations:

$$\blacksquare \ \Pi_i^{\mathsf{p}} = \{ \ \overline{L} \mid L \in \Sigma_i^{\mathsf{p}} \ \}$$

$$\Sigma_1^p = NP, \Pi_1^p = coNP$$

$$\quad \blacksquare \ \Sigma_{i}^{\mathsf{p}} \subseteq \Sigma_{i+1}^{\mathsf{p}}, \ \Pi_{i}^{\mathsf{p}} \subseteq \Pi_{i+1}^{\mathsf{p}}$$

■
$$\Sigma_i^p \cup \Pi_i^p \subseteq PSPACE$$



PSPACE

"Collapse" of the hierarchy

- Statements like "P \neq NP" and "NP \neq coNP" are widely believed conjectures
- We can use these as assumptions to show some results
 - E.g., assuming that $P \neq NP$, NP-complete problems are not in P.
- For some results, stronger conjectures seem necessary
- Another conjecture: "the PH does not collapse"
 - "the PH collapses to P"

PH = P

• "the PH collapses to the *i*th level" $PH = \Sigma_i^p$

Theorem

Let
$$i \ge 1$$
. If $\Sigma_i^p = \Pi_i^p$, then $PH = \Sigma_i^p$.
If $P = NP$, then $PH = P$.

QBF problems complete for Σ_i^p and Π_i^p

- $\Sigma_i \mathsf{SAT} = \{ \varphi = \exists \overline{u}_1 \forall \overline{u}_2 \dots Q_i \overline{u}_i \ \psi(\overline{u}_1, \dots, \overline{u}_i) : \varphi \text{ is a true QBF } \},$ where each $\overline{u}_j = (u_{j,1}, \dots, u_{j,\ell})$ is a sequence of propositional variables, $\exists \overline{u}_j \text{ stands for } \exists u_{j,1} \exists u_{j,2} \dots \exists u_{j,\ell}, \text{ and } \forall \overline{u}_j \text{ for } \forall u_{j,1} \forall u_{j,2} \dots \forall u_{j,\ell}$
- $\blacksquare \ \Pi_i \mathsf{SAT} = \{ \ \varphi = \forall \overline{u}_1 \exists \overline{u}_2 \dots Q_i \overline{u}_i \ \psi(\overline{u}_1, \dots, \overline{u}_i) : \varphi \ \mathsf{is a true QBF} \ \},$

Theorem

Let $i \geq 1$. Then $\Sigma_i SAT$ is Σ_i^p -complete and $\Pi_i SAT$ is Π_i^p -complete (both under polynomial-time reductions).

Oracle characterizations of $\Sigma_i^{\rm p}$ and $\Pi_i^{\rm p}$

Theorem

Let
$$i \geq 2$$
. Then $\Sigma_i^p = NP^{\Sigma_{i-1}SAT}$ and $\Pi_i^p = coNP^{\Sigma_{i-1}SAT}$.

- (Or replace Σ_{i-1} SAT by any Σ_{i-1}^p -complete or Π_{i-1}^p -complete problem.)
- This is often written as: $\Sigma_i^p = NP^{\sum_{i=1}^p}$ and $\Pi_i^p = coNP^{\sum_{i=1}^p}$

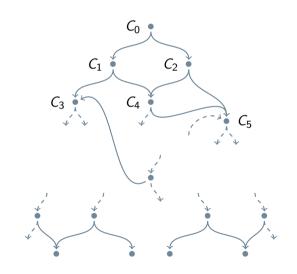
Configuration graphs

Configurations *C* consist of:

- (1) tape contents
- (2) tape head positions
- (3) state $q \in Q$

Configuration graph of a TM M on some input x:

- Nodes are all the configurations that are reachable from the initial configuration *C*₀
- Edge from *C* to *C'* if applying one of the transition functions in *C* results in *C'*



Alternating Turing machines

Definition (Alternating Turing machines; ATMs)

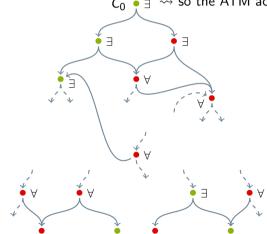
- Instead of a single transition function δ , there are two transition functions δ_1, δ_2 .
- lacktriangle The set $Q\setminus\{q_{\mathsf{acc}},q_{\mathsf{rej}}\}$ is partitioned into Q_\exists and $Q_orall$.
- Executions of alternating TMs are defined using a labeling procedure on the configuration graph. Repeatedly apply, until a fixpoint is reached:
 - Label each configuration with q_{acc} with "accept."
 - If a configuration c with $q \in Q_{\exists}$ has an edge to a configuration c' that is labeled with "accept," then label c with "accept."
 - If a configuration c has a state $q \in Q_{\forall}$ and both configurations c', c'' that are reachable from it in the graph are labeled with "accept," then label c with "accept."

The TM accepts the input if the starting configuration is labeled with "accept."

■ The TM runs in time T(n) if for every input x and for every possible sequence of transition function choices, the machine halts after at most T(|x|) steps.

Alternating Turing machines (ct'd)

- reject
- accept



ATIME, Σ_i TIME, and Π_i TIME

Definition (ATIME)

Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \{0,1\}^*$ is in ATIME(T(n)) if there exists an ATM that decides L and that runs in time O(T(n)).

Definition (Σ_i TIME)

Let $T: \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \{0,1\}^*$ is in $\Sigma_i \mathsf{TIME}(T(n))$ if there exists an ATM that decides L, that runs in time O(T(n)), whose initial state is in Q_{\exists} , and that on every input and on every path in the configuration graph alternates at most i-1 times between Q_{\exists} and Q_{\forall} .

■ Π_i TIME is defined similarly to Σ_i TIME, with the difference that the initial state of the ATM is in Q_\forall

ATM characterizations

Theorem

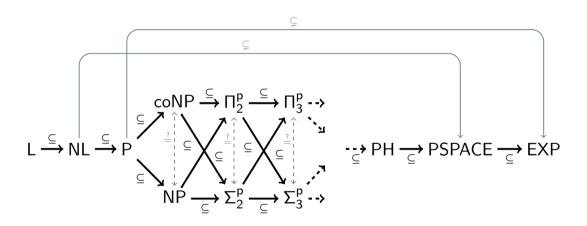
$$\mathsf{PSPACE} = \bigcup_{c \geq 0} \mathsf{ATIME}(n^c).$$

Theorem

Let $i \geq 1$. Then:

$$\Sigma_i^p = \bigcup_{c>0} \Sigma_i \mathsf{TIME}(n^c)$$
 $\Pi_i^p = \bigcup_{c>0} \Pi_i \mathsf{TIME}(n^c).$

An overview of complexity classes



Recap

- The classes Σ_i^p and Π_i^p
- The Polynomial Hierarchy
- $\Sigma_i^{\rm p}$ -complete and $\Pi_i^{\rm p}$ -complete QBF problems
- Characterizations using oracles and ATMs

Next time

- A "breather"
- Time to reflect on what we've done so far
- Requests for things to recap?