# **Computational Complexity**

Lecture 6: Space complexity

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

April 21, 2023

Recap *What we saw last time..* 

Limits of diagonalization, relativizing results

# Oracles

• There exist  $A, B \subseteq \{0, 1\}^*$  such that  $P^A = NP^A$  and  $P^B \neq NP^B$ .

- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE, NPSPACE
- Logspace reductions
- NL-completeness

- Instead of measuring the number T(n) of steps, we will measure the number S(n) of tape cells used
- For time bounds, T(n) < n typically makes no sense
  - In less than n steps, the machine cannot even read the input
- However, for space bounds, S(n) < n does make sense in some situations
- For space-bounded computation:
  - The input tape is read-only
  - We count how many tape cells on the 'work tapes' are used

# Definition (SPACE)

Let  $S : \mathbb{N} \to \mathbb{N}$  be a function. A decision problem  $L \subseteq \Sigma^*$  is in SPACE(S(n)) if there exists a Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most  $c \cdot S(n)$  tape cells.

# Definition (NSPACE)

Let  $S : \mathbb{N} \to \mathbb{N}$  be a function. A decision problem  $L \subseteq \Sigma^*$  is in NSPACE(S(n)) if there exists a *nondeterministic* Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most  $c \cdot S(n)$  tape cells.

# Theorem If $S : \mathbb{N} \to \mathbb{N}$ is a space-constructible function, then: $DTIME(S(n)) \subseteq SPACE(S(n)) \subseteq NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))}).$

- Assumption of space-constructibility rules out 'weird' functions.
  - S is space-constructible if there exists a TM that computes the function  $x \mapsto S(|x|)$  in space O(S(|x|)), for each  $x \in \{0, 1\}^*$

# Some space classes

# Definition

$$PSPACE = \bigcup_{c \ge 1} SPACE(n^c) \qquad L = SPACE(\log n)$$
$$NPSPACE = \bigcup_{c \ge 1} NSPACE(n^c) \qquad NL = NSPACE(\log n)$$

- By the previous theorem, then  $L \subseteq NL \subseteq P$  and PSPACE  $\subseteq$  NPSPACE  $\subseteq$  EXP.
- What is an example of a problem in PSPACE? SAT
- What is an example of a problem in NL? Reachability in graphs

## Theorem

If  $f, g : \mathbb{N} \to \mathbb{N}$  are space-constructible functions such that f(n) is o(g(n)), then:

 $SPACE(f(n)) \subsetneq SPACE(g(n))$  and  $NSPACE(f(n)) \subsetneq NSPACE(g(n))$ .

## • As a result: $L \subsetneq PSPACE$ and $NL \subsetneq NPSPACE$ .

# Definition (QBFs)

A quantified Boolean formula (QBF) (in prenex form) is of the form  $Q_1x_1Q_2x_2\cdots Q_mx_m \varphi(x_1,\ldots,x_m)$ , where each  $Q_i$  is one of the two quantifiers  $\exists$  or  $\forall$ , where the variables  $x_1,\ldots,x_m$  range over  $\{0,1\}$ , and where  $\varphi$  is a propositional formula (without quantifiers).

Truth of QBFs is defined recursively, based on the typical semantics of  $\exists$  and  $\forall$ .

• For example,  $\exists x_1 \forall x_2 \ (x_1 \lor \neg x_2) \land (x_1 \lor x_2)$  is a QBF

# Definition (TQBF)

The language TQBF consists of all QBFs that are true.

## Theorem

TQBF is PSPACE-complete (under polynomial-time reductions).

- Why is TQBF in PSPACE?
  - Use a recursive algorithm.

For  $\varphi = \exists x_i \ \psi$ , recurse on  $\psi[x_i \mapsto 0]$  and  $\psi[x_i \mapsto 1]$ , and return 1 if and only if at least one of the recursive calls returns 1. Similarly for  $\varphi = \forall x_i \ \psi$ .

- This takes exponential time, but polynomial space:
  - The recursion depth is linear in  $|\varphi|$ .
  - Space can be reused.
  - With polynomial space, we keep track of the position in the recursion tree, and if we're going up or down.





#### Theorem

TQBF is PSPACE-complete (under polynomial-time reductions).

- Why is TQBF PSPACE-hard?
  - Reduce arbitrary polynomial-space computation of TM M on input x to TQBF; (computation that uses p(n) space takes time at most 2<sup>q(n)</sup>)
  - Main idea: construct a QBF  $\varphi_{c_1,c_2,t}$  that expresses that the computation leads from configuration  $c_1$  to configuration  $c_2$  within t steps, and return  $\varphi_{c_0,c_{accent},2^{q(n)}}$
  - $\varphi_{c_1,c_2,t}$  has propositional variables that correspond to the configurations  $c_1,c_2$
  - For t = 1, this can be done analogously to the proof of the Cook-Levin Theorem
  - For t > 1:  $\varphi_{c_1,c_2,t}$  expresses  $\exists m (\varphi_{c_1,m,\lceil t/2 \rceil} \land \varphi_{m,c_2,\lceil t/2 \rceil}) m$  is a sequence of vars
  - **•** To avoid exponential blowup, write  $\varphi_{c_1,c_2,t}$  in the following way:

$$\exists m \forall c_3 \forall c_4 (("c_1 = c_3" \land "c_2 = m") \lor ("c_1 = m" \land "c_2 = c_4")) \rightarrow \varphi_{c_3, c_4, \lceil t/2 \rceil}$$



For every space-constructible  $S : \mathbb{N} \to \mathbb{N}$  with  $S(n) \ge \log n$ :

```
NSPACE(S(n)) \subseteq SPACE(S(n)^2).
```

- So, in particular, PSPACE = NPSPACE.
- Proof strategy (for PSPACE = NPSPACE):
  - Show that TQBF is NPSPACE-complete and in PSPACE.

- To investigate  $L \stackrel{?}{=} NL$ , we need reductions that are weak enough.
- Since  $L \subseteq NL \subseteq P$ , every problem in  $L \cup NL$  is reducible to each other using polynomial-time reductions.
  - You can solve any problem in  $L \cup NL$  in polynomial time.
  - Reduction: solve the problem, and output a trivial yes-input or a trivial no-input.

# Definition

A function  $f : \{0,1\}^* \to \{0,1\}^*$  is implicitly logspace computable if:

- f is polynomially bounded, i.e., there exists some c such that  $|f(x)| \le |x|^c$  for every  $x \in \{0, 1\}^*$ , and
- the languages  $L_f = \{ (x, i) \mid f(x)_i = 1 \}$  and  $L'_f = \{ (x, i) \mid i \leq |f(x)| \}$ are in the complexity class L, where  $f(x)_i$  denotes the *i*th bit of f(x).

# Definition

A language B is logspace-reducible to a language C (also written  $B \leq_{\ell} C$ ) if there is a function  $f : \{0,1\}^* \to \{0,1\}^*$  that is implicitly logspace computable and for each  $x \in \{0,1\}^*$  it holds that  $x \in B$  if and only if  $f(x) \in C$ .

- A language B is NL-complete if  $B \in NL$  and  $C \leq_{\ell} B$  for every  $C \in NL$ .
- Logspace reductions are transitive: if  $B \leq_{\ell} C$  and  $C \leq_{\ell} D$ , then  $B \leq_{\ell} D$ .
- If  $B \leq_{\ell} C$  and  $C \in L$ , then  $B \in L$ .

• So, if any NL-complete language is in L, then L = NL.

# An NL-complete problem

Consider graph reachability in directed graphs:

 $\mathsf{PATH} = \{ (G, s, t) \mid G = (V, E) \text{ is a directed graph, } s, t \in V, \\ and t \text{ is reachable from } s \text{ in } G \}$ 

- PATH is NL-complete. Why is it in NL?
  - Keep the current and next node in memory (logspace).
  - Guess the next node, check if they are connected, and forget the previous node.
  - Start at *s*, accept if you reach *t*.
  - Keep the length of the path you already visited in memory (logspace), and stop when it is longer than |V| (to avoid looping forever).



# Theorem (Immerman 1988, Szelepcsényi 1987)

For every space-constructible  $S : \mathbb{N} \to \mathbb{N}$  with  $S(n) > \log n$ :

NSPACE(S(n)) = coNSPACE(S(n)).

• In particular: NL = coNL.

# An overview of complexity classes



- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE = NPSPACE
- Logspace reductions
- NL-completeness

- Complexity classes between P and PSPACE
- The Polynomial Hierarchy
- Bounded quantifier alternation
- Alternating Turing machines