Recap

What we saw last time..

- Limits of diagonalization, relativizing results
- Oracles

There exist $A, B \subseteq \{0, 1\}^*$ such that $P^A = NP^A$ and $P^B \neq NP^B$.
What will we do today?

- Space-bounded computation
- Limits on memory space
- L, NL, PSPACE, NPSPACE
- Logspace reductions
- NL-completeness
Instead of measuring the number $T(n)$ of steps, we will measure the number $S(n)$ of tape cells used.

For time bounds, $T(n) < n$ typically makes no sense:

- In less than n steps, the machine cannot even read the input.

However, for space bounds, $S(n) < n$ does make sense in some situations.

For space-bounded computation:

- The input tape is read-only.
- We count how many tape cells on the ‘work tapes’ are used.
Definition (SPACE)

Let $S : \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \Sigma^*$ is in $\text{SPACE}(S(n))$ if there exists a Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most $c \cdot S(n)$ tape cells.

Definition (NSPACE)

Let $S : \mathbb{N} \to \mathbb{N}$ be a function. A decision problem $L \subseteq \Sigma^*$ is in $\text{NSPACE}(S(n))$ if there exists a nondeterministic Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most $c \cdot S(n)$ tape cells.
Some first relations between time and space

Theorem

If $S : \mathbb{N} \to \mathbb{N}$ is a space-constructible function, then:

$$\text{DTIME}(S(n)) \subseteq \text{SPACE}(S(n)) \subseteq \text{NSPACE}(S(n)) \subseteq \text{DTIME}(2^{O(S(n))}).$$

- Assumption of space-constructibility rules out ‘weird’ functions.

- S is *space-constructible* if there exists a TM that computes the function $x \mapsto S(|x|)$ in space $O(S(|x|))$, for each $x \in \{0, 1\}^*$.
Some space classes

Definition

\[
PSPACE = \bigcup_{c \geq 1} \text{SPACE}(n^c) \quad \text{L} = \text{SPACE}(\log n) \\
\text{NPSPACE} = \bigcup_{c \geq 1} \text{NSPACE}(n^c) \quad \text{NL} = \text{NSPACE}(\log n)
\]

- By the previous theorem, then \(L \subseteq NL \subseteq P \) and \(PSPACE \subseteq \text{NPSPACE} \subseteq \text{EXP} \).

- What is an example of a problem in \(PSPACE \)? \(\text{SAT} \)

- What is an example of a problem in \(NL \)? \(\text{Reachability in graphs} \)
Theorem

If $f, g : \mathbb{N} \rightarrow \mathbb{N}$ are space-constructible functions such that $f(n)$ is $o(g(n))$, then:

$$ \text{SPACE}(f(n)) \subsetneq \text{SPACE}(g(n)) \quad \text{and} \quad \text{NSPACE}(f(n)) \subsetneq \text{NSPACE}(g(n)). $$

As a result:

$L \subsetneq \text{PSPACE}$ and $NL \subsetneq \text{NPSPACE}$.
A quantified Boolean formula (QBF) (in prenex form) is of the form
$Q_1 x_1 Q_2 x_2 \cdots Q_m x_m \varphi(x_1, \ldots, x_m)$, where each Q_i is one of the two quantifiers \exists or \forall, where the variables x_1, \ldots, x_m range over $\{0, 1\}$, and where φ is a propositional formula (without quantifiers).

Truth of QBFs is defined recursively, based on the typical semantics of \exists and \forall.

For example, $\exists x_1 \forall x_2 (x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is a QBF

The language TQBF consists of all QBFs that are true.
Theorem

TQBF is PSPACE-complete (under polynomial-time reductions).

Why is TQBF in PSPACE?

- Use a recursive algorithm.
 For \(\varphi = \exists x_i \psi \), recurse on \(\psi[x_i \mapsto 0] \) and \(\psi[x_i \mapsto 1] \), and return 1 if and only if at least one of the recursive calls returns 1. Similarly for \(\varphi = \forall x_i \psi \).

- This takes exponential time, but polynomial space:
 - The recursion depth is linear in \(|\varphi| \).
 - Space can be reused.
 - With polynomial space, we keep track of the position in the recursion tree, and if we’re going up or down.
PSPACE-completeness

Theorem

TQBF is PSPACE-complete (under polynomial-time reductions).

Why is TQBF PSPACE-hard?

- Reduce arbitrary polynomial-space computation of TM M on input x to TQBF; (computation that uses $p(n)$ space takes time at most $2^{q(n)}$)
- Main idea: construct a QBF $\varphi_{c_1, c_2, t}$ that expresses that the computation leads from configuration c_1 to configuration c_2 within t steps, and return $\varphi_{c_0, c_{\text{accept}}, 2q(n)}$
- $\varphi_{c_1, c_2, t}$ has propositional variables that correspond to the configurations c_1, c_2
- For $t = 1$, this can be done analogously to the proof of the Cook-Levin Theorem
- For $t > 1$: $\varphi_{c_1, c_2, t}$ expresses $\exists m \left(\varphi_{c_1, m, \lceil t/2 \rceil} \land \varphi_{m, c_2, \lceil t/2 \rceil} \right)$ – m is a sequence of vars
- To avoid exponential blowup, write $\varphi_{c_1, c_2, t}$ in the following way:

$$\exists m \forall c_3 \forall c_4 \left(\left(c_1 = c_3 \land c_2 = m \right) \lor \left(c_1 = m \land c_2 = c_4 \right) \right) \rightarrow \varphi_{c_3, c_4, \lceil t/2 \rceil}$$
Savitch’s Theorem

Theorem (Savitch 1970)

For every space-constructible $S : \mathbb{N} \to \mathbb{N}$ with $S(n) \geq \log n$:

\[
\text{NSPACE}(S(n)) \subseteq \text{SPACE}(S(n)^2).
\]

So, in particular, $\text{PSPACE} = \text{NPSPACE}$.

Proof strategy (for $\text{PSPACE} = \text{NPSPACE}$):

- Show that TQBF is NPSPACE-complete and in PSPACE.
To investigate \(L \equiv NL \), we need reductions that are weak enough.

Since \(L \subseteq NL \subseteq P \), every problem in \(L \cup NL \) is reducible to each other using polynomial-time reductions.

- You can solve any problem in \(L \cup NL \) in polynomial time.

- Reduction: solve the problem, and output a trivial yes-input or a trivial no-input.
Definition

A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is implicitly logspace computable if:

- f is polynomialsly bounded, i.e., there exists some c such that $|f(x)| \leq |x|^c$ for every $x \in \{0, 1\}^*$, and

- the languages $L_f = \{ (x, i) \mid f(x)_i = 1 \}$ and $L'_f = \{ (x, i) \mid i \leq |f(x)| \}$ are in the complexity class L, where $f(x)_i$ denotes the ith bit of $f(x)$.

Definition

A language B is logspace-reducible to a language C (also written $B \leq^\ell C$) if there is a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ that is implicitly logspace computable and for each $x \in \{0, 1\}^*$ it holds that $x \in B$ if and only if $f(x) \in C$.

A language B is NL-complete if $B \in \text{NL}$ and $C \leq_{\ell} B$ for every $C \in \text{NL}$.

Logspace reductions are transitive: if $B \leq_{\ell} C$ and $C \leq_{\ell} D$, then $B \leq_{\ell} D$.

If $B \leq_{\ell} C$ and $C \in \text{L}$, then $B \in \text{L}$.

So, if any NL-complete language is in L, then $\text{L} = \text{NL}$.
Consider graph reachability in directed graphs:

\[\text{PATH} = \{ (G, s, t) \mid G = (V, E) \text{ is a directed graph, } s, t \in V, \text{ and } t \text{ is reachable from } s \text{ in } G \} \]

PATH is NL-complete. Why is it in NL?

- Keep the current and next node in memory (logspace).
- Guess the next node, check if they are connected, and forget the previous node.
- Start at s, accept if you reach t.
- Keep the length of the path you already visited in memory (logspace), and stop when it is longer than \(|V| \) (to avoid looping forever).
Theorem (Immerman 1988, Szelepcsényi 1987)

For every space-constructible $S : \mathbb{N} \rightarrow \mathbb{N}$ with $S(n) > \log n$:

$$\text{NSPACE}(S(n)) = \text{coNSPACE}(S(n)).$$

- In particular: $\text{NL} = \text{coNL}$.
An overview of complexity classes

L ⊆ NL ⊆ P ⊆ coNP ⊆ PSPACE ⊆ EXP

L = coNL
NP ⊆ coNPSPACE
NPSPACE = EXP
NPSPACE = coNPSPACE
Recap

- Space-bounded computation
- Limits on memory space
- \(L, \ NL, \ PSPACE = NPSPACE \)
- Logspace reductions
- NL-completeness
Next time

- Complexity classes between P and PSPACE
- The Polynomial Hierarchy
- Bounded quantifier alternation
- Alternating Turing machines