Computational Complexity

Lecture 6: Space complexity

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

April 21, 2023

Recap

What we saw last time..

- Limits of diagonalization, relativizing results
- Oracles
- There exist $A, B \subseteq\{0,1\}^{*}$ such that $P^{A}=N P^{A}$ and $P^{B} \neq N P^{B}$.

What will we do today?

■ Space-bounded computation

- Limits on memory space

■ L, NL, PSPACE, NPSPACE

- Logspace reductions

■ NL-completeness

Space-bounded computation

- Instead of measuring the number $T(n)$ of steps, we will measure the number $S(n)$ of tape cells used
- For time bounds, $T(n)<n$ typically makes no sense
- In less than n steps, the machine cannot even read the input
- However, for space bounds, $S(n)<n$ does make sense in some situations
- For space-bounded computation:
- The input tape is read-only
- We count how many tape cells on the 'work tapes' are used

Definition (SPACE)

Let $S: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A decision problem $L \subseteq \Sigma^{*}$ is in $\operatorname{SPACE}(S(n))$ if there exists a Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most $c \cdot S(n)$ tape cells.

Definition (NSPACE)

Let $S: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A decision problem $L \subseteq \Sigma^{*}$ is in $\operatorname{NSPACE}(S(n))$ if there exists a nondeterministic Turing machine that decides L and that on inputs of length n its tape heads (excluding on the input tape) visit at most $c \cdot S(n)$ tape cells.

Theorem

If $S: \mathbb{N} \rightarrow \mathbb{N}$ is a space-constructible function, then:

$$
\operatorname{DTIME}(S(n)) \subseteq \operatorname{SPACE}(S(n)) \subseteq \operatorname{NSPACE}(S(n)) \subseteq \operatorname{DTIME}\left(2^{O(S(n))}\right)
$$

- Assumption of space-constructibility rules out 'weird' functions.
- S is space-constructible if there exists a TM that computes the function $x \mapsto S(|x|)$ in space $O(S(|x|))$, for each $x \in\{0,1\}^{*}$

Definition

$$
\begin{aligned}
\operatorname{PSPACE} & =\bigcup_{c \geq 1} \operatorname{SPACE}\left(n^{c}\right) & \mathrm{L}=\operatorname{SPACE}(\log n) \\
\operatorname{NPSPACE} & =\bigcup_{c \geq 1} \operatorname{NSPACE}\left(n^{c}\right) & \mathrm{NL}=\operatorname{NSPACE}(\log n)
\end{aligned}
$$

■ By the previous theorem, then $\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P}$ and PSPACE \subseteq NPSPACE $\subseteq E X P$.

- What is an example of a problem in PSPACE?
- What is an example of a problem in NL?

Space Hierarchy Theorem

Theorem

If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are space-constructible functions such that $f(n)$ is $o(g(n))$, then:
$\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(g(n)) \quad$ and $\quad \operatorname{NSPACE}(f(n)) \subsetneq \operatorname{NSPACE}(g(n))$.

■ As a result: $\mathrm{L} \subsetneq$ PSPACE and $\mathrm{NL} \subsetneq$ NPSPACE.

Definition (QBFs)

A quantified Boolean formula (QBF) (in prenex form) is of the form
$Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{m} x_{m} \varphi\left(x_{1}, \ldots, x_{m}\right)$, where each Q_{i} is one of the two quantifiers \exists or \forall, where the variables x_{1}, \ldots, x_{m} range over $\{0,1\}$, and where φ is a propositional formula (without quantifiers).
Truth of QBFs is defined recursively, based on the typical semantics of \exists and \forall.

- For example, $\exists x_{1} \forall x_{2}\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is a QBF

Definition (TQBF)

The language TQBF consists of all QBFs that are true.

PSPACE-completeness

Theorem

TQBF is PSPACE-complete (under polynomial-time reductions).

- Why is TQBF in PSPACE?
- Use a recursive algorithm.

For $\varphi=\exists x_{i} \psi$, recurse on $\psi\left[x_{i} \mapsto 0\right]$ and $\psi\left[x_{i} \mapsto 1\right]$, and return 1 if and only if at least one of the recursive calls returns 1 . Similarly for $\varphi=\forall x_{i} \psi$.

- This takes exponential time, but polynomial space:
- The recursion depth is linear in $|\varphi|$.
- Space can be reused.
- With polynomial space, we keep track of the position in the recursion tree,
 and if we're going up or down.

$$
\left\{x_{1} \mapsto 0, x_{2} \mapsto 1\right\}
$$

PSPACE-completeness

Theorem

TQBF is PSPACE-complete (under polynomial-time reductions).

- Why is TQBF PSPACE-hard?
- Reduce arbitrary polynomial-space computation of TM \mathbb{M} on input x to TQBF; (computation that uses $p(n)$ space takes time at most $2^{q(n)}$)
- Main idea: construct a QBF $\varphi_{c_{1}, c_{2}, t}$ that expresses that the computation leads from configuration c_{1} to configuration c_{2} within t steps, and return $\varphi_{c_{0}, c_{\text {accept }}, 2^{2(n)}}$
- $\varphi_{c_{1}, c_{2}, t}$ has propositional variables that correspond to the configurations c_{1}, c_{2}
- For $t=1$, this can be done analogously to the proof of the Cook-Levin Theorem
- For $t>1$: $\varphi_{c_{1}, c_{2}, t}$ expresses $\exists m\left(\varphi_{c_{1}, m,\lceil t / 2\rceil} \wedge \varphi_{m, c_{2},\lceil t / 2\rceil}\right)-m$ is a sequence of vars
- To avoid exponential blowup, write $\varphi_{c_{1}, c_{2}, t}$ in the following way:

$$
\exists m \forall c_{3} \forall c_{4}\left(\left({ }^{\prime \prime} c_{1}=c_{3} " \wedge " c_{2}=m^{\prime \prime}\right) \vee\left(" c_{1}=m^{\prime \prime} \wedge " c_{2}=c_{4} "\right)\right) \rightarrow \varphi_{c_{3}, c_{4},\lceil t / 2\rceil}
$$

Theorem (Savitch 1970)

For every space-constructible $S: \mathbb{N} \rightarrow \mathbb{N}$ with $S(n) \geq \log n$:

$$
\operatorname{NSPACE}(S(n)) \subseteq \operatorname{SPACE}\left(S(n)^{2}\right)
$$

■ So, in particular, PSPACE $=$ NPSPACE .

- Proof strategy (for PSPACE = NPSPACE):
- Show that TQBF is NPSPACE-complete and in PSPACE.

Logspace reductions

- To investigate $\mathrm{L} \stackrel{?}{=} \mathrm{NL}$, we need reductions that are weak enough.
- Since $L \subseteq N L \subseteq P$, every problem in $L \cup N L$ is reducible to each other using polynomial-time reductions.
- You can solve any problem in L $\cup N L$ in polynomial time.
- Reduction: solve the problem, and output a trivial yes-input or a trivial no-input.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is implicitly logspace computable if:

- f is polynomially bounded, i.e., there exists some c such that $|f(x)| \leq|x|^{c}$ for every $x \in\{0,1\}^{*}$, and
- the languages $L_{f}=\left\{(x, i) \mid f(x)_{i}=1\right\}$ and $L_{f}^{\prime}=\{(x, i)|i \leq|f(x)|\}$ are in the complexity class L, where $f(x)_{i}$ denotes the ith bit of $f(x)$.

Definition

A language B is logspace-reducible to a language C (also written $B \leq_{\ell} C$) if there is a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ that is implicitly logspace computable and for each $x \in\{0,1\}^{*}$ it holds that $x \in B$ if and only if $f(x) \in C$.

NL-completeness

- A language B is NL-complete if $B \in \mathrm{NL}$ and $C \leq_{\ell} B$ for every $C \in \mathrm{NL}$.
- Logspace reductions are transitive: if $B \leq_{\ell} C$ and $C \leq_{\ell} D$, then $B \leq_{\ell} D$.
- If $B \leq_{\ell} C$ and $C \in \mathrm{~L}$, then $B \in \mathrm{~L}$.

■ So, if any NL-complete language is in L, then $L=N L$.

An NL-complete problem

■ Consider graph reachability in directed graphs:
PATH $=\{(G, s, t) \mid G=(V, E)$ is a directed graph, $s, t \in V$, and t is reachable from s in $G\}$

■ PATH is NL-complete. Why is it in NL?

- Keep the current and next node in memory (logspace).
- Guess the next node, check if they are connected, and forget the previous node.

- Start at s, accept if you reach t.
- Keep the length of the path you already visited in memory (logspace), and stop when it is longer than $|V|$ (to avoid looping forever).

Theorem (Immerman 1988, Szelepcsényi 1987)
For every space-constructible $S: \mathbb{N} \rightarrow \mathbb{N}$ with $S(n)>\log n$:
$\operatorname{NSPACE}(S(n))=\operatorname{coNSPACE}(S(n))$.

- In particular: NL = coNL.

An overview of complexity classes

Recap

■ Space-bounded computation

- Limits on memory space

■ L, NL, PSPACE = NPSPACE

- Logspace reductions
- NL-completeness
- Complexity classes between P and PSPACE

■ The Polynomial Hierarchy
■ Bounded quantifier alternation

- Alternating Turing machines

