Computational Complexity

Lecture 5: Relativization and the Baker-Gill-Solovay Theorem

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

Recap

What we saw last time..

- Diagonalization arguments
- Time Hierarchy Theorems
- $P \neq E X P$

What will we do today?

- Can we use diagonalization to attack $P \stackrel{?}{=}$ NP? (Spoiler: no.)
- Limits of diagonalization
- Relativizing results
- Oracles

Diagonalization

- One concrete interpretation of diagonalization proofs:
any proof technique that depends on the following properties of TMs:
(I) effective representation of TMs by strings
(II) ability of one TM to simulate another efficiently
- We will see some limits of these proof techniques.

- Black-box machine that can solve a decision problem O in a single time-step

Oracle Turing machines

Definition

An oracle Turing machine is a $T M \mathbb{M}$ that has a special (read-write) tape that we call the oracle tape and three special states $q_{\mathrm{quer}}, q_{\mathrm{yes}}, q_{\mathrm{no}} \in Q$.

To execute \mathbb{M}, we specify some $O \subseteq\{0,1\}^{*}$ that is used as the oracle for \mathbb{M}.
Whenever during the execution, \mathbb{M} is in the state $q_{\text {query }}$ the machine (in the next step) enters the state $q_{\text {yes }}$ if $w \in O$ and the state q_{no} if $w \notin O$-where w denotes the current contents of the special oracle tape.
The tape contents and tape heads do not change/move.
$\mathbb{M}^{O}(x)$ denotes the output of \mathbb{M} on input x with oracle O.

- An oracle TM knows how to use any oracle $O \subseteq\{0,1\}^{*}$

Definition

Let $O \subseteq\{0,1\}^{*}$ be a decision problem.

- P^{0} is the set of all decision problems that can be decided by a polynomial-time deterministic TM with oracle access to O.
- NP° is the set of all decision problems that can be decided by a polynomial-time nondeterministic TM with oracle access to O.
- We will use similar notation for variants of other complexity classes that are based on Turing machines with bounds on the running time, e.g., EXP ${ }^{\circ}$.

Diagonalization

- One concrete interpretation of diagonalization proofs:
any proof technique that depends on the following properties of TMs:
(I) effective representation of TMs by strings
(II) ability of one TM to simulate another efficiently
- We will see some limits of these proof techniques.

Relativizing results

- Regardless of the choice of $O \subseteq\{0,1\}^{*}$, properties (I) and (II) also hold for oracle TMs
- Relativizing results are results that depend only on (I) and (II)
- E.g., P \subsetneq EXP
- Relativizing results also hold when you add any oracle $O \subseteq\{0,1\}^{*}$
- E.g., $\mathrm{P}^{0} \subsetneq \operatorname{EXP}^{0}$, for each $O \subseteq\{0,1\}^{*}$

The Baker-Gill-Solovay Theorem

Theorem (Baker, Gill, Solovay 1975)
 There exist $A, B \subseteq\{0,1\}^{*}$ such that $\mathrm{P}^{A}=N \mathrm{P}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{N} \mathrm{P}^{B}$.

- So no proof that $P=N P$ or $P \neq N P$ can be relativizing.

Oracle A such that $\mathrm{P}^{\mathrm{A}}=\mathrm{NP}^{A}$

- Let $A=\left\{\left(\alpha, x, 1^{n}\right) \mid \mathbb{M}_{\alpha}\right.$ outputs 1 on input x within 2^{n} steps $\}$.
- Then $\operatorname{EXP} \subseteq \mathrm{P}^{A} \subseteq \mathrm{NP}^{A} \subseteq \operatorname{EXP}$.
- $\operatorname{EXP} \subseteq \mathrm{P}^{A}$ (idea):

■ With one oracle query to A you can do exponential-time computation in one step.

- $N P^{A} \subseteq \operatorname{EXP}$ (idea):
- Simulate computation of $N P^{A}$ machine in exponential time.

■ Enumerate all sequences of nondeterministic choices.

■ Compute answer to each (polynomial-size) oracle query.

Oracle B such that $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$

- For any $B \subseteq\{0,1\}^{*}$, let $U_{B}=\left\{1^{n} \mid\right.$ there is some $x \in\{0,1\}^{n}$ such that $\left.x \in B\right\}$.
- Then $U_{B} \in N P^{B}$.
- On any input 1^{n}, we use nondeterminism to guess $x \in\{0,1\}^{n}$, and query the oracle B to check if $x \in B$.
- We construct some $B \subseteq\{0,1\}^{*}$ such that $U_{B} \notin P^{B}$.
- Using diagonalization. :-)
- We gradually build up B in stages. Start with \emptyset. One stage for each $i \in\{0,1\}^{*}$.
- In stage i :
- For only finitely many strings x we chose whether $x \in B$ or $x \notin B$. Let n be larger than the length of any such x.
- Run \mathbb{M}_{i} on input 1^{n} for $2^{n} / 10$ steps.
- If \mathbb{M}_{i} queries " $x \in B$?" for strings for which we already determined if $x \in B$ or $x \notin B$, use the same answer.
- If \mathbb{M}_{i} queries " $x \in B$?" for new strings, answer that $x \notin B$.
- Ensure that \mathbb{M}_{i} 's answer on 1^{n} after $2^{n} / 10$ steps is wrong.
- If \mathbb{M}_{i} accepts 1^{n}, for all strings $x \in\{0,1\}^{n}$, let $x \notin B$.
- If \mathbb{M}_{i} rejects 1^{n}, take some yet unqueried $x \in\{0,1\}^{n}$, and let $x \in B$.
- Each TM is represented by infinitely many i, and every polynomial is smaller than $2^{n} / 10$ for large enough n. So no TM can decide U_{B} in polynomial time with oracle access to B.

No relativizing results for P vs. NP

- Suppose that we have a relativizing proof that $P=N P$
- Then also $\mathrm{P}^{B}=\mathrm{N} \mathrm{P}^{B}$, contradicting $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
- Suppose that we have a relativizing proof that $P \neq N P$
- Then also $\mathrm{P}^{A} \neq \mathrm{NP} \mathrm{P}^{A}$, contradicting $\mathrm{P}^{A}=\mathrm{NP}$.

Recap

- Limits of diagonalization, relativizing results
- Oracles
- There exist $A, B \subseteq\{0,1\}^{*}$ such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP} \mathrm{P}^{B}$.
- Space-bounded computation
- Limits on memory space

