
Computational Complexity

Lecture 3: NP-completeness and the Cook-Levin Theorem

Ronald de Haan
me@ronalddehaan.eu

University of Amsterdam

April 12, 2023



Recap
What we saw last time..

The universal Turing machine

Nondeterministic Turing machines

More complexity classes: EXP, NP, coNP

Polynomial-time reductions

NP-hardness and NP-completeness



What will we do today?

Prove that NP-complete problems exist :-)

The Cook-Levin Theorem

Concrete reductions between problems

Search vs. decision problems



Our first NP-complete problem

Definition
The decision problem TM-SAT is defined as follows:

TM-SAT = { (α, x , 1n, 1t) | there exists u ∈ {0, 1}n such that
Mα outputs 1 on input (x , u) within t steps }

Or, described in a different format:

Input: A binary string α, a binary string x , a unary string 1n,
and a unary string 1t .

Question: Does there exist a binary string u ∈ {0, 1}n such that Mα

outputs 1 on input (x , u) within t steps?



TM-SAT is NP-complete

Proposition

TM-SAT is NP-complete

Proof (sketch).

Membership in NP: guess u, and verify by simulating Mα.

NP-hardness:

Take an arbitrary L ∈ NP. Then there exists a polynomial p and a TM M such that for
all x ∈ {0, 1}∗ there exists some u ∈ {0, 1}p(|x |) such that M(x , u) = 1 iff x ∈ L.

Let q be a polynomial bounding the running time of M.

Take the reduction R from L to TM-SAT where:
R(x) = (repr(M), x , 1p(|x |), 1q(|x |+p(|x |)))



Propositional logic

Propositional logic formulas ϕ are built from atomic propositions x1, x2, . . .
using Boolean operators ∧,∨,→,¬.

For example, ϕ1 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3).

A truth assignment is a function α : Vars(ϕ)→ {0, 1} that maps the atomic
propositions to 1 (true) or 0 (false).

For example, α1 = {x1 7→ 1, x2 7→ 1, x3 7→ 0}.

The truth ϕ[α] of a formula ϕ under a truth assignment α is defined inductively,
following the standard meaning of the operators.

For example, ϕ1[α1] = 0.



Propositional satisfiability

Definition
The decision problem Formula-SAT is defined as follows:

Formula-SAT = { ϕ | ϕ is a propositional logic formula and there
exists a satisfying truth assignment α for ϕ }

Or, described in a different format:

Input: A propositional logic formula ϕ.

Question: Is ϕ satisfiable?



Propositional satisfiability of CNF formulas

Definition
The decision problem CNF-SAT is defined as follows:

CNF-SAT = { ϕ | ϕ is a propositional logic formula in CNF and there
exists a satisfying truth assignment α for ϕ }

Or, described in a different format:

Input: A propositional logic formula ϕ in CNF.

Question: Is ϕ satisfiable?

Conjunctive Normal Form (CNF): a conjunction of disjunctions of literals.

For example: ϕ1 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4)



The Cook-Levin Theorem

Theorem (Cook 1971, Levin 1969)

CNF-SAT is NP-complete.



Polynomial-time computation in a picture
For a single-tape TM

T timesteps

T tape cells

...

0 1 1 0 · · ·

1 1 1 0 · · ·

1 0 1 0 · · ·
...

q0

q2

q7
...

For each t, i ∈ {1, . . . ,T}
and each γ ∈ Γ:
introduce a proposition ct,i ,γ

For each t, i ∈ {1, . . . ,T}:
introduce a proposition ht,i

For each t ∈ {1, . . . ,T}
and each q ∈ Q:
introduce a proposition st,q



Proof of Cook-Levin Theorem

Take an arbitrary L ∈ NP. Then there exist polynomials p, q : N→ N and a TM M
running in time q(n) such that for each x ∈ {0, 1}∗:

x ∈ L if and only if there exists u ∈ {0, 1}p(|x |) such that M(x , u) = 1.

W.l.o.g., assume that M is single-tape and that qacc and qrej are ‘sinks’

Take T = q(|x |+ p(|x |)). That is, T ≥ running time of M(x , u).

We will construct a formula ϕ (over the variables ct,i ,γ , ht,i , st,q)
that is satisfiable if and only if x ∈ L

ϕ is the conjunction of several clauses (see next slides).



Proof of Cook-Levin Theorem (ct’d)

Initialize tape contents:

(c1,i,xi ) for 1 ≤ i ≤ |x |

(c1,i,0 ∨ c1,i,1) for |x | < i ≤ |x |+ p(|x |)

(c1,i,�) for |x |+ p(|x |) < i ≤ T

Other initial conditions:

(h1,1)

(s1,qstart)



Proof of Cook-Levin Theorem (ct’d)

At most one symbol per cell (at each time):

(¬ct,i,γ ∨ ¬ct,i,γ′) for 1 ≤ i , t ≤ T and all γ, γ′ ∈ Γ with γ 6= γ′

At most one tape head position at each time:

(¬ht,i ∨ ¬ht,i ′) for 1 ≤ i , i ′, t ≤ T with i 6= i ′

At most one state at each time:

(¬st,q ∨ ¬st,q′) for 1 ≤ t ≤ T and q, q′ ∈ Q with q 6= q′



Proof of Cook-Levin Theorem (ct’d)

Correct transitions.

For 1 ≤ i , t ≤ T − 1, γ ∈ Γ, and q ∈ Q:

(ct,i,γ ∧ ht,i ∧ st,q)→ (ct+1,i,γ′ ∧ ht+1,i ∧ st+1,q′) if δ(q, γ) = (q′, γ′, S)

(ct,i,γ ∧ ht,i ∧ st,q)→ (ct+1,i,γ′ ∧ ht+1,i+1 ∧ st+1,q′) if δ(q, γ) = (q′, γ′,R)

(ct,i,γ ∧ ht,i ∧ st,q)→ (ct+1,i,γ′ ∧ ht+1,i−1 ∧ st+1,q′) if δ(q, γ) = (q′, γ′, L)



Proof of Cook-Levin Theorem (ct’d)

No change when the tape head is away:

(ct,i,γ ∧ ¬ht,i )→ ct+1,i,γ for 1 ≤ t ≤ T − 1, 1 ≤ i ≤ T and γ ∈ Γ

The machine must accept:

sT ,qacc



Proof of Cook-Levin Theorem (ct’d)

The formula ϕ is satisfiable if and only if there exists some u ∈ {0, 1}p(|x |) such
that M(x , u) = 1, and thus if and only if x ∈ L.

The conjuncts of ϕ can be equivalently rewritten as clauses (of size ≤ 4)

(a ∧ b ∧ c)→ (d ∧ e ∧ f ) 7→
(¬a ∨ ¬b ∨ ¬c ∨ d) ∧ (¬a ∨ ¬b ∨ ¬c ∨ e) ∧ (¬a ∨ ¬b ∨ ¬c ∨ f )

Computing ϕ takes polynomial time.

Polynomial number of atomic propositions and clauses



3SAT

Definition
The decision problem 3SAT is defined as follows:

3SAT = { ϕ | ϕ is a propositional logic formula in 3CNF and there
exists a satisfying truth assignment α for ϕ }

Or, described in a different format:

Input: A propositional logic formula ϕ in 3CNF.

Question: Is ϕ satisfiable?

3CNF: each clause (disjunction) contains at most 3 literals



3SAT is NP-complete

Theorem (Cook 1971, Levin 1969)

3SAT is NP-complete.

The formula that we constructed is in 4CNF. So 4SAT is NP-complete.
We give a polynomial-time reduction from 4SAT to 3SAT.

We replace each clause c = (`1 ∨ `2 ∨ `3 ∨ `4) of length 4 by:

(`1 ∨ `2 ∨ zc) ∧ (¬zc ∨ `3 ∨ `4),

where zc is a fresh variable.

The resulting formula ϕ′ is satisfiable if and only if the original formula ϕ is
satisfiable.



The web of reductions



3COL is NP-complete

Theorem (Karp 1972)

3COL is NP-complete.

We will show NP-hardness by reduction from 3SAT.



Gadgets



Gadgets

T

F X

xi ¬xi for each variable xi

`2 `3

`1

for each clause cj



Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3)

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3



Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 1}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3



Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 1}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3



Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 1}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3



Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 0}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3



Example
ϕ = (¬x1 ∨ ¬x2 ∨ x3), α = {x1 7→ 1, x2 7→ 1, x3 7→ 0}

T

F X x1 ¬x1 x2 ¬x2 x3 ¬x3

×



Search vs. decision

Does NP-completeness tell us something useful about the search problems on
which our decision problems are based?

Proposition

Suppose that P = NP. Then for every L ∈ NP and each verifier M for L, there exists a
polynomial-time Turing machine B that on input x ∈ L outputs a certificate u for x .



Hamiltonian cycles in grid graphs
For the homework..

·
•
•
•
•
•
•

·
•
•
•
•
•
•

•
•
·
·
·
•
•

•
•
·
·
·
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

·
•
•
•
•
•
•

·
•
•
•
•
•
•

·
•
•
•
•
•
•

•
•
·
·
·
•
•

•
•
·
·
·
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

·
•
•
•
•
•
•

A grid graph G .. ..and a Hamiltonian cycle in G .



Slitherlink
For the homework..

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

2
2
2

2
2

1
1
2
3
2

1

2
3

1

2
1

3
2

3
1
2
1

1

3
2
3
2
1
2

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

2
2
2

2
2

1
1
2
3
2

1

2
3

1

2
1

3
2

3
1
2
1

1

3
2
3
2
1
2

A Slitherlink instance I .. ..and a solution for I .



Recap

Prove that NP-complete problems exist :-)

The Cook-Levin Theorem

Concrete reductions between problems

Search vs. decision problems



Next time

Diagonalization arguments

Time Hierarchy Theorems

P 6= EXP


