Computational Complexity

Lecture 14: Recap and bonus

Ronald de Haan
me@ronalddehaan. eu
University of Amsterdam

May 26, 2023

Today

- A bird's eye overview of what we covered
- (Possible bonus: quick intro into parameterized complexity theory)

An overview of complexity classes

Theorem (Cook 1971, Levin 1969)
3SAT is NP-complete.

The Time Hierarchy Theorems

Theorem

If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are time-constructible functions such that $f(n) \log f(n)$ is $o(g(n))$, then $\operatorname{DTIME}(f(n)) \subsetneq \operatorname{DTIME}(g(n))$.

Theorem

If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are time-constructible functions such that $f(n+1)$ is $o(g(n))$, then $\operatorname{NTIME}(f(n)) \subsetneq \operatorname{NTIME}(g(n))$.

Theorem

If $S: \mathbb{N} \rightarrow \mathbb{N}$ is a space-constructible function, then:
$\operatorname{DTIME}(S(n)) \subseteq \operatorname{SPACE}(S(n)) \subseteq \operatorname{NSPACE}(S(n)) \subseteq \operatorname{DTIME}\left(2^{O(S(n))}\right)$.

Theorem
If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are space-constructible functions such that $f(n)$ is $o(g(n))$, then:
$\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(g(n))$ and $\operatorname{NSPACE}(f(n)) \subsetneq \operatorname{NSPACE}(g(n))$.

Oracles and relativizing proofs

Theorem (Baker, Gill, Solovay 1975)
There exist $A, B \subseteq\{0,1\}^{*}$ such that $\mathrm{P}^{A}=N \mathrm{P}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{N} \mathrm{P}^{B}$.

Quantified Boolean formulas (QBFs)

Theorem
TQBF is PSPACE-complete.

Theorem
Let $i \geq 1$. Then Σ_{i} SAT is Σ_{i}^{p}-complete and Π_{i} SAT is Π_{i}^{p}-complete.

Circuits and advice

Theorem (Karp, Lipton 1980)
If $N P \subseteq P /$ poly, then $\Sigma_{2}^{p}=\Pi_{2}^{p}$.

PCP and approximation

Theorem (PCP)

$N P=P C P(\log n, 1)$.

There exists some $\rho<1$ such that for all $L \in N P$ there is a polynomial-time reduction R from L to 3SAT where for all $x \in\{0,1\}^{*}$:

- if $x \in L$ then $\operatorname{val}(R(x))=1$;
- if $x \notin L$ then $\operatorname{val}(R(x))<\rho$.

ETH

Definition

Let δ_{3} be the infimum of the set of constants c for which there exists an algorithm solving 3SAT in time $O\left(2^{c n}\right) \cdot m^{O(1)}$, where n is the number of variables in the q-SAT input and m the number of clauses.

The Exponential-Time Hypothesis (ETH) states that $\delta_{3}>0$.

Theorem

The ETH implies that there is no $2^{o(n)}$-time algorithm for 3SAT and that there is no $2^{\circ(n+m)}$-time algorithm for 3SAT.

Average-case and distP

Definition (distP)

$\langle L, \mathcal{D}\rangle$ is in the class distP (also called: avgP) if there exists a deterministic TM \mathbb{M} that decides L and a constant $\epsilon>0$ such that for all $n \in \mathbb{N}$:

$$
\underset{x \in \in_{\mathbb{R}} \mathcal{D}_{n}}{\mathbb{E}}\left[\operatorname{time}_{\mathbb{M}}(x)^{\epsilon}\right] \text { is } O(n) .
$$

Parameterized complexity: with VC as example

■ VC: given a graph G and $u \in \mathbb{N}$, does G have a vertex cover of size u ?

- This problem is NP-complete, and the best algorithms that we have take exponential time in the worst case.
- This worst-case analysis takes into account every possible input.
- Can we take into account additional knowledge about the input that we might have to get more positive worst-case guarantees?

Parameterized complexity: with VC as example (ct'd)

- Suppose that we are dealing with an application where the value of u is always much smaller than the size of the graph G.
- Can we restrict the exponential factor in the running time to just u ?
- Answer: yes!

Fixed-parameter tractability

Definition

A parameterized problem is a language $L \subseteq \Sigma^{*} \times \mathbb{N}$ of pairs (x, k), where x is called the main input and k is called the parameter.

Definition (FPT)

A parameterized problem $L \subseteq \Sigma^{*} \times \mathbb{N}$ is fixed-parameter tractable if there exist a polynomial p, a computable function f, and a deterministic TM \mathbb{M} that, when given input (x, k), decides if $(x, k) \in L$ and runs in time $f(k) \cdot p(|x|)$.

Parameterized complexity landscape

- VC: NP-complete, and no $2^{o(v)}$-time algorithm (assuming ETH)
- With u as parameter? Fixed-parameter tractable
- With $v-u$ as parameter? W[1]-complete
- With the degree d of the graph as parameter? para-NP-complete
- With the treewidth t of the graph as parameter? Fixed-parameter tractable
- Etc.

