# **Computational Complexity**

Lecture 14: Recap and bonus

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

May 26, 2023

- A bird's eye overview of what we covered
- (Possible bonus: quick intro into *parameterized complexity theory*)

### An overview of complexity classes



# The Cook-Levin Theorem

# Theorem (Cook 1971, Levin 1969)

3SAT is NP-complete.

#### Theorem

If  $f, g : \mathbb{N} \to \mathbb{N}$  are time-constructible functions such that  $f(n) \log f(n)$  is o(g(n)), then  $\mathsf{DTIME}(f(n)) \subsetneq \mathsf{DTIME}(g(n))$ .

#### Theorem

If  $f, g : \mathbb{N} \to \mathbb{N}$  are time-constructible functions such that f(n + 1) is o(g(n)), then  $\mathsf{NTIME}(f(n)) \subsetneq \mathsf{NTIME}(g(n))$ .

#### Theorem

#### If $S : \mathbb{N} \to \mathbb{N}$ is a space-constructible function, then:

 $\mathsf{DTIME}(S(n)) \subseteq \mathsf{SPACE}(S(n)) \subseteq \mathsf{NSPACE}(S(n)) \subseteq \mathsf{DTIME}(2^{O(S(n))}).$ 

#### Theorem

If  $f, g : \mathbb{N} \to \mathbb{N}$  are space-constructible functions such that f(n) is o(g(n)), then: SPACE $(f(n)) \subsetneq$  SPACE(g(n)) and NSPACE $(f(n)) \subsetneq$  NSPACE(g(n)).

### Oracles and relativizing proofs

### Theorem (Baker, Gill, Solovay 1975)

There exist  $A, B \subseteq \{0,1\}^*$  such that  $P^A = NP^A$  and  $P^B \neq NP^B$ .

# Quantified Boolean formulas (QBFs)

#### Theorem

TQBF *is* PSPACE-*complete*.

#### Theorem

Let  $i \geq 1$ . Then  $\Sigma_i SAT$  is  $\Sigma_i^p$ -complete and  $\Pi_i SAT$  is  $\Pi_i^p$ -complete.

# Theorem (Karp, Lipton 1980)

If NP  $\subseteq$  P/poly, then  $\Sigma_2^p = \Pi_2^p$ .

# Probabilistic computation



# Theorem (PCP)

 $\mathsf{NP} = \mathsf{PCP}(\log n, 1).$ 

There exists some  $\rho < 1$  such that for all  $L \in NP$  there is a polynomial-time reduction R from L to 3SAT where for all  $x \in \{0, 1\}^*$ :

- if  $x \in L$  then val(R(x)) = 1;
- if  $x \notin L$  then  $val(R(x)) < \rho$ .

### Definition

Let  $\delta_3$  be the infimum of the set of constants c for which there exists an algorithm solving 3SAT in time  $O(2^{cn}) \cdot m^{O(1)}$ , where n is the number of variables in the q-SAT input and m the number of clauses.

The *Exponential-Time Hypothesis (ETH)* states that  $\delta_3 > 0$ .

#### Theorem

The ETH implies that there is no  $2^{o(n)}$ -time algorithm for 3SAT and that there is no  $2^{o(n+m)}$ -time algorithm for 3SAT.

# Definition (distP)

 $\langle L, D \rangle$  is in the class distP (also called: avgP) if there exists a deterministic TM  $\mathbb{M}$  that decides L and a constant  $\epsilon > 0$  such that for all  $n \in \mathbb{N}$ :

 $\mathbb{E}_{x \in_{\mathsf{R}} \mathcal{D}_n} [ \operatorname{time}_{\mathbb{M}}(x)^{\epsilon} ] \text{ is } O(n).$ 

- VC: given a graph G and  $u \in \mathbb{N}$ , does G have a vertex cover of size u?
- This problem is NP-complete, and the best algorithms that we have take exponential time in the worst case.
- This worst-case analysis takes into account every possible input.

Can we take into account additional knowledge about the input that we might have to get more positive worst-case guarantees?

### Parameterized complexity: with VC as example (ct'd)

- Suppose that we are dealing with an application where the value of *u* is always much smaller than the size of the graph *G*.
- Can we restrict the exponential factor in the running time to just *u*?

Answer: yes!

#### Definition

A parameterized problem is a language  $L \subseteq \Sigma^* \times \mathbb{N}$  of pairs (x, k), where x is called the main input and k is called the parameter.

# Definition (FPT)

A parameterized problem  $L \subseteq \Sigma^* \times \mathbb{N}$  is *fixed-parameter tractable* if there exist a polynomial p, a computable function f, and a deterministic TM  $\mathbb{M}$  that, when given input (x, k), decides if  $(x, k) \in L$  and runs in time  $f(k) \cdot p(|x|)$ .

#### Parameterized complexity landscape



# Parameterized complexity: 'dialogues' with your problems

■ VC: NP-complete, and no 2<sup>o(v)</sup>-time algorithm (assuming ETH)

- With *u* as parameter? Fixed-parameter tractable
- With v u as parameter? W[1]-complete
- With the degree *d* of the graph as parameter? para-NP-complete
- With the treewidth *t* of the graph as parameter? Fixed-parameter tractable

#### Etc.