Computational Complexity

Lecture 13: Average-case complexity and Impagliazzo's Five Worlds

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

May 24, 2023

- Subexponential-time complexity
- Exponential-Time Hypothesis (ETH)

What will we do today?

- Average-case complexity
- One-way functions
- Impagliazzo's Five Worlds

- A problem L ⊆ {0,1}* can be solved in worst-case running time T(n) if there exists an algorithm A that solves L and that halts within time T(|x|) for each x ∈ {0,1}*.
- In other words, the worst-case running time T(n) is the maximum of the running times for all inputs of size n.

Definition (distributional problems)

A distributional problem $\langle L, \mathcal{D} \rangle$ consists of a language $L \subseteq \{0, 1\}^*$ and a sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of probability distributions, where each \mathcal{D}_n is a probability distribution over $\{0, 1\}^n$.

Definition (distP)

 $\langle L, D \rangle$ is in the class distP (also called: avgP) if there exists a deterministic TM M that decides L and a constant $\epsilon > 0$ such that for all $n \in \mathbb{N}$:

 $\mathbb{E}_{x \in_{\mathsf{R}} \mathcal{D}_n} [\operatorname{time}_{\mathbb{M}}(x)^{\epsilon}] \text{ is } O(n).$

• The ϵ is there for technical reasons—to invert a polynomial to O(n).

Definition (P-computable distributions)

A sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of distributions is P-*computable* if there exists a polynomial-time TM that, given $x \in \{0, 1\}^n$, computes:

$$\mu_{\mathcal{D}_n}(x) = \sum_{\substack{y \in \{0,1\}^n \\ y \leq x}} \mathbb{P}_n[y],$$

where $y \le x$ if the number represented by the binary string y is at most the number represented by the binary string x.

Definition (P-samplable distributions)

A sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of distributions is P-samplable if there exists a polynomial-time probabilistic TM \mathbb{M} such that for each $n \in \mathbb{N}$, the random variables $\mathbb{M}(1^n)$ and \mathcal{D}_n are equally distributed.

Definition (distNP)

A problem $\langle L, D \rangle$ is in distNP if $L \in NP$ and D is P-computable.

Definition (sampNP)

A problem $\langle L, \mathcal{D} \rangle$ is in sampNP if $L \in NP$ and \mathcal{D} is P-samplable.

The questions "distNP [?] distP" and "sampNP [?] distP" are average-case analogues of the question "NP [?] P"

Definition (one-way functions)

A polynomial-time computable function $f : \{0,1\}^* \to \{0,1\}^*$ is a *one-way function* if for every polynomial-time probabilistic TM \mathbb{M} there is a neglegible function $\epsilon : \mathbb{N} \to [0,1]$ such that for every $n \in \mathbb{N}$:

$$\mathbb{P}_{\substack{x \in_{\mathsf{R}} \{0,1\}^n \\ y = f(x)}} \left[\ \mathbb{M}(y) = x' \text{ such that } f(x') = y \ \right] < \epsilon(n)$$

where a function $\epsilon : \mathbb{N} \to [0, 1]$ is *neglegible* if $\epsilon(n) = \frac{1}{n^{\omega(1)}}$, that is, for every c and sufficiently large n, $\epsilon(n) < \frac{1}{n^c}$.

- Conjecture: there exist one-way functions (implying $P \neq NP$)
- OWFs can be used to create private-key cryptography

Five possible situations regarding the status of various complexity-theoretic assumptions:

- Algorithmica
- Heuristica
- Pessiland
- Minicrypt
- Cryptomania

Russell Impagliazzo. A personal view of average-case complexity. In: Proceedings of the 10th Annual IEEE Conference on Structure in Complexity Theory, pp. 134–147, 1995.

• P = NP (or $NP \subseteq BPP$)

- ▶ Say, SAT is linear-time solvable
- ▶ This is a computational utopia
- > There exist efficient algorithms for creative tasks, e.g., writing proofs
- Essentially no cryptography possible (private-key nor public-key)

• $P \neq NP$, but distNP, sampNP \subseteq distP

- \blacktriangleright Breakthroughs of P = NP work almost all the time
- So cryptography breaks too

- distNP, sampNP $\not\subseteq$ distP (so P \neq NP)
- one-way functions do not exist

▶ No computational breakthroughs, and most cryptography schemes do not work

• One-way functions exist (so $P \neq NP$ and distNP $\not\subseteq$ distP)

- ▶ No "P = NP"-type breakthroughs
- Private-key cryptography works
- All "highly structured" problems in NP, such as integer factoring, are solvable in polynomial-time
- Public-key cryptography might not work

 Factoring large integers takes exponential time on average (or a corresponding result for a similar problem)

- ▶ No general-purpose efficient algorithms ($P \neq NP$)
- Private-key and public-key cryptography works

Impagliazzo's Five Worlds (1995)

Five worlds:

- Algorithmica efficient general-purpose algorithms
- Heuristica
- Pessiland worst of all worlds
- Minicrypt
- Cryptomania all kinds of cryptography possible

• (Technically, these cases are not exhaustive—there are some "weirdland" scenarios, e.g., the case where SAT \in P, but the fastest algorithm takes time $\Theta(n^{100})$.)

- Average-case complexity
- One-way functions
- Impagliazzo's Five Worlds

Recap and/or question session