Computational Complexity

Lecture 12: Subexponential-time complexity and the ETH

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

May 17, 2023

- Approximation algorithms
- Limits of approximation algorithms
- PCP Theorem

- Consider exponential-time and subexponential-time algorithms
- A new assumption: ETH
- Use this assumption to derive exponential-time lower bounds

Our favorite example: 3SAT

Let's find some exponential-time algorithms for 3SAT

- Take some 3CNF formula $\varphi = c_1 \wedge \cdots \wedge c_m$ with $var(\varphi) = \{x_1, \ldots, x_n\}$.
- Consider this naive algorithm:
 - Iterate over all truth assignments $\alpha : var(\varphi) \rightarrow \{0, 1\}$
 - If α satisfies φ , for some α , return 1; otherwise, return 0

- This algorithm takes time $2^n \cdot O(m^c)$, for some $c \in \mathbb{N}$
- Can we do better?

Our favorite example: 3SAT (ct'd)

```
\mathtt{A}_{\texttt{recursive}}(\varphi):
```

```
if \varphi contains only clauses of size at most 2 then
| decide if \varphi is satisfiable in polynomial time, and return the answer;
else
```

```
take some clause c_j in \varphi of size 3;
for each of the 7 truth assignments \alpha to var(c_j) that satisfy c_j do
| if A_{recursive}(\varphi[\alpha]) = 1 then
| return 1;
end
return 0;
end
```

- \blacksquare This algorithm $A_{ ext{recursive}}$ takes time $1.92^n \cdot O(m^c)$, for some $c \in \mathbb{N}$
 - Recursion tree has branching factor 7 and depth n/3, so is of size $O(7^{n/3}) = O(1.92^n)$
- Can we keep improving the base of the exponential? Is there some limit?

Functions between polynomial and exponential

$\mathsf{P} \neq \mathsf{NP}$ not enough to rule out subexponential-time algorithms

- The assumption $P \neq NP$ is not enough to rule out subexponential-time algorithms for NP-complete problems
- Typical strategy to rule out polynomial-time algorithms:
 - Take some NP-complete *L*.
 - Assume $P \neq NP$.
 - Suppose that *L* is solvable in polynomial time.
 - Then P = NP. \oint

only works for polynomial time

Definition (δ_q)

For $q \ge 3$, let δ_q be the infimum of the set of constants c for which there exists an algorithm solving q-SAT in time $O(2^{cn}) \cdot m^{O(1)}$, where n is the number of variables in the q-SAT input and m the number of clauses.

Definition (Exponential-Time Hypothesis; ETH)

Exponential-Time Hypothesis (unproven conjecture): $\delta_3 > 0$.

ETH and subexponential-time algorithms for 3SAT

- The ETH implies that there is no $2^{o(n)}$ -time algorithm for 3SAT:
 - Suppose that some $2^{o(n)}$ -time algorithm A for 3SAT exists.
 - Suppose also that the ETH is true: $\delta_3 > 0$.
 - Then there is some c such that no $2^{cn} \cdot m^{O(1)}$ -time algorithm for 3SAT exists.
 - For large enough *n*, *A* runs in time $2^{cn} \cdot m^{O(1)}$.
- So we can solve 3SAT in time $2^{O(n)}$, but—assuming the ETH—not in time $2^{o(n)}$.
 - E.g., not in time $2^{O(n/\log n)}$, $2^{O(\sqrt{n})}$ or $n^{O(\log n)}$.
- The ETH implies $P \neq NP$ —or in other words: P = NP implies that the ETH is false

Showing ETH-based lower bounds for other problems

- Take VC as example—solvable in time $2^{O(v)}$, where v is the number of vertices.
- Can we show a matching lower bound—i.e., VC not solvable in time $2^{o(v)}$?
- Idea:
 - Use reduction from 3SAT to VC
 - v of VC needs to increase at most linearly in n of 3SAT
 - In the reduction that we have, v is linear in n + m
- Suppose VC is solvable in time $2^{o(v)}$ using some algorithm A
- ldea to construct a $2^{o(n)}$ -time algorithm for 3SAT:
 - \blacktriangleright use reduction from 3SAT to VC
 - \blacktriangleright then run A to solve the resulting VC instance
- Only works in time $2^{o(n)}$ if v is linear in n.

Sparsification Lemma

For each $\epsilon > 0$, there is a constant $\kappa(\epsilon)$ such that every 3CNF formula φ with *n* variables and *m* clauses can be expressed as:

$$\varphi \equiv \bigvee_{i=1}^t \psi_i$$

where $t \leq 2^{\epsilon n}$ and each ψ_i is a 3CNF formula on the same variables as φ and with $\kappa(\epsilon) \cdot n$ clauses.

Moreover, this disjuction $\bigvee_{i=1}^{t} \psi_i$ can be computed in time $2^{\epsilon n} \cdot m^{O(1)}$.

Assuming the ETH, 3SAT cannot be solved in time $2^{o(n+m)}$

- Assume the ETH, i.e., $\delta_3 > 0$.
- Suppose that 3SAT can be solved in time $2^{o(n+m)}$ with some algorithm A.
- Take some c with $0 < c < \delta_3$.
- We will show that 3SAT is solvable in time $2^{cn} \cdot m^{O(1)}$:
 - **Take some 3CNF formula** φ with *n* variables and *m* clauses.
 - Let $\epsilon = c/2$.
 - Construct the ψ_i 's from the Sparsification Lemma (using the value $\epsilon = c/2$)
 - **•** Run the algorithm A on these ψ_i 's.
 - **Return 1** if some ψ_i is satisfiable; return 0 otherwise.
 - This runs in time $2^{cn} \cdot m^{O(1)}$. 4
 - For large enough *n*, running *A* on ψ_i takes time $2^{\epsilon n} m^{O(1)}$ since $|\psi_i|$ is linear in *n*.

Lower bound for VC using the ETH

- Suppose VC is solvable in time 2^{o(v)} using some algorithm A, where v is the number of vertices.
- Idea to construct a $2^{o(n+m)}$ -time algorithm for 3SAT:
 - \blacksquare Take some 3CNF formula φ
 - Use polynomial-time reduction R from 3SAT to VC: $R(\varphi) = (G, k)$ with G = (V, E), where v = |V| = O(n + m)
 - Then run A to decide if G has a vertex cover of size k (which is the case if and only if φ is satisfiable)
 - This runs in time $|\varphi|^{O(1)} + 2^{o(v)} = 2^{o(n+m)}$. 2
- So, assuming the ETH, there is no $2^{o(v)}$ -time algorithm for VC.

Definition (δ_q ; repeated)

For $q \ge 3$, let δ_q be the infimum of the set of constants c for which there exists an algorithm solving q-SAT in time $O(2^{cn}) \cdot m^{O(1)}$, where n is the number of variables in the q-SAT input and m the number of clauses.

Definition (Strong Exponential-Time Hypothesis; SETH)

Strong Exponential-Time Hypothesis (unproven conjecture):

$$\lim_{q\to\infty}\delta_q=1.$$

• The SETH is a stronger assumption than the ETH

• SETH implies that CNF-SAT cannot be solved in time $O(2^{cn})$ for any c < 1

- Considered exponential-time and subexponential-time algorithms
- Assumption about (impossibility of) subexponential-time algorithms: ETH
- How to use the ETH to derive exponential-time lower bounds

Next time

- Average-case complexity
- Impagliazzo's Five Worlds