Lecture 11: Approximation Algorithms

Ronald de Haan
me@ronalddehaan.eu
University of Amsterdam

May 16, 2023
Recap

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP
What will we do today?

- Approximation algorithms
- Limits of approximation algorithms
Many NP-complete problems are decision problems asking for an exact/optimal solutions

Idea behind approximation: perhaps less than optimal solutions are enough, and easier to compute
Let $G = (V, E)$ be an undirected graph. A subset $C \subseteq V$ is a vertex cover of G if each edge in E has at least one endpoint in C.

Decision problem dec-VC: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k?

We can find the size k_{min} of the smallest vertex cover—and a smallest vertex cover—by calling an algorithm for dec-VC a linear number of times.
Example: Vertex Cover

- Let $G = (V, E)$ be an undirected graph. A subset $C \subseteq V$ is a *vertex cover* of G if each edge in E has at least one endpoint in C.

- Decision problem **dec-VC**: given G and $k \in \mathbb{N}$, does G have a vertex cover of size k?

- We can find the size k_{\min} of the smallest vertex cover—and a smallest vertex cover—by calling an algorithm for **dec-VC** a linear number of times.

- For approximation algorithms, we consider the following problem (say, **opt-VC**):

 Input: an undirected graph $G = (V, E)$

 Output: a vertex cover $C \subseteq V$ of G

 where we measure the quality of vertex covers C by their size (the closer to k_{\min}, the better)
<table>
<thead>
<tr>
<th>Definition (Approximation algorithms for VC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $\rho < 1$. A ρ-approximation algorithm for vertex cover is an algorithm that, when given a graph $G = (V, E)$ as input, outputs a vertex cover C of G of size at most $1/\rho$ of the minimum size of any vertex cover of G.</td>
</tr>
</tbody>
</table>

- (Sometimes these are called $1/\rho$-approximation algorithms.)
Approximation algorithm for Vertex Cover

- For example, a polynomial-time $1/2$-approximation algorithm for vertex cover:

$$C := \emptyset; \ G' := G;$$

\hspace{3mm} \textbf{while} G' \textit{has edges} \textbf{do}

\hspace{8mm} take some (arbitrary) edge $e = \{v_1, v_2\}$ of G';

\hspace{8mm} add v_1, v_2 to C and remove all edges containing v_1 or v_2 from G';

\hspace{3mm} \textbf{end}

\hspace{3mm} return C;

- Every edge in G has an endpoint in C, so C is a vertex cover

- The edges e_1, \ldots, e_m used to construct C are pairwise disjoint, and $|C| = 2m$

- Every vertex cover of G must hit each of e_1, \ldots, e_m, so must have size $\geq m$
Limits of approximation algorithms

- For vertex cover, we have a polynomial-time $1/2$-approximation algorithm. Can we get a polynomial-time $2/3$-approximation algorithm, or even one for each $\rho < 1$?

- The Cook-Levin Theorem turns out to be not strong enough to rule this out.

Definition (val(φ))

Let φ be a propositional formula in CNF. Then $\text{val}(\varphi)$ is the maximum ratio of clauses of φ that can be satisfied simultaneously by any truth assignment.

Thus, if φ is satisfiable, then $\text{val}(\varphi) = 1$, and if φ is not satisfiable, then $\text{val}(\varphi) < 1$.

Definition (Approximation algorithms for MAX3SAT)

Let $\rho < 1$. A ρ-approximation algorithm for MAX3SAT is an algorithm that, when given a 3CNF formula φ as input, outputs a truth assignment α that satisfies at least a $\rho \cdot \text{val}(\varphi)$ fraction of clauses of φ.
To rule out ρ-approximation algorithms, we would need something like:

- If $\varphi \in 3\text{SAT}$, then $\text{val}(\varphi) = 1$
- If $\varphi \notin 3\text{SAT}$, then $\text{val}(\varphi) < \rho$

What the Cook-Levin Theorem gives us is a reduction R with:

- If $x \in L$, then $\text{val}(R(x)) = 1$
- If $x \notin L$, then $1 - \frac{1}{|x|} \leq \text{val}(R(x)) < 1$ – you can satisfy all clauses except for one

So we cannot take any fixed ρ and rule out ρ-approximation algorithms
The PCP Theorem

Definition (PCP verifier)

Let $L \subseteq \{0,1\}^*$ and let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. We say that L has an $(r(n), q(n))$-PCP verifier if there is a polynomial-time probabilistic algorithm V with:

- **(Efficiency)** When given as input $x \in \{0,1\}^n$ and when given random access to a string $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$ (the proof), V uses at most $r(n)$ random coin flips and makes at most $q(n)$ nonadaptive queries to locations of π.
 - Random access: V can query an oracle that gives the i-th bit of π.
 - Nonadaptive queries: the queries do not depend on the answers for previous queries.
- V always outputs either 0 or 1.
- **(Completeness)** If $x \in L$, then there exists a proof $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$ such that $\mathbb{P}[V^\pi(x) = 1] = 1$.
- **(Soundness)** If $x \notin L$, then for every proof $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$, it holds that $\mathbb{P}[V^\pi(x) = 1] \leq 1/2$.
Definition (PCP(r(n), q(n)))

Let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. The class $\text{PCP}(r(n), q(n))$ consists of all decision problems $L \subseteq \{0, 1\}^*$ for which there exist constants $c, d > 0$ such that L has a $(c \cdot r(n), d \cdot q(n))$-PCP verifier.

Theorem (PCP)

$\text{NP} = \text{PCP}(\log n, 1)$.

- $q(n) = O(1), r(n) = O(\log n)$, so the length $q(n)2^{r(n)}$ of proofs is polynomial
- A constant number $q(n) = O(1)$ of random queries to the proof
The PCP Theorem is equivalent to the following statement:

Theorem (PCP; the approximation view)

There exists some $\rho < 1$ such that for all $L \in \text{NP}$ there is a polynomial-time reduction R from L to 3SAT where for all $x \in \{0,1\}^*$:

- if $x \in L$ then $\text{val}(R(x)) = 1$;
- if $x \notin L$ then $\text{val}(R(x)) < \rho$.

For example: there exists some $\rho < 1$ such that if there exists a polynomial-time ρ-approximation algorithm for MAX3SAT, then $P = \text{NP}$.
Ruling out polynomial-time ρ-approximation for MAX3SAT for some ρ

Statement: there exists some $\rho < 1$ such that if there exists a polynomial-time ρ-approximation algorithm for MAX3SAT, then $P = NP$.

- Let $L = 3SAT$. Then there exists some $\rho < 1$ such that there is a polynomial-time reduction R from 3SAT to 3SAT where, for all $x \in \{0, 1\}^*$:
 - if $\varphi \in 3SAT$ then $\text{val}(R(\varphi)) = 1$;
 - if $\varphi \notin 3SAT$ then $\text{val}(R(\varphi)) < \rho$.

- Suppose that there exists a polynomial-time ρ-approx. algorithm A for MAX3SAT.

- We can then solve 3SAT in polynomial time as follows:
 - Take an arbitrary input φ for 3SAT.
 - Produce $\psi = R(\varphi)$ in polynomial time
 - Run A on ψ and count the fraction δ of clauses that are satisfied
 - If $\delta \geq \rho$, then $\varphi \in 3SAT$; if $\delta < \rho$, then $\varphi \notin 3SAT$.
Recap

- Approximation algorithms
- Limits of approximation algorithms
- PCP Theorem
Next time

- Subexponential-time algorithms
- The Exponential Time Hypothesis (ETH)