Computational Complexity

Lecture 10: Probabilistic Algorithms

Ronald de Haan
me@ronalddehaan . eu
University of Amsterdam

May 12, 2023

Recap

- Non-uniform complexity
- Circuit complexity
- TMs that take advice
- The Karp-Lipton Theorem: if $N P \subseteq P /$ poly, then $\Sigma_{2}^{p}=\Pi_{2}^{p}$

What will we do today?

- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP

Randomized algorithms

- Randomized (or probabilistic) algorithms are a realistic extension of deterministic algorithms
- They have access to a random number generator (or random coin flips)
- The outcome of such algorithms is a random variable
- The running time of such algorithms is a random variable

Example problem

- Input: \quad you're given $m \in \mathbb{N}$ and you have access to an oracle O that can give you a value $O(i) \in\{a, b\}$, for each $i \in\left\{1, \ldots, 2^{m}\right\}$
- Promise: m is even and for exactly half of the i 's it holds that $O(i)=a$, and so for the other half, $O(i)=b$
- Task: \quad output some $i \in\left\{1, \ldots, 2^{m}\right\}$ such that $O(i)=a$
- When we consider deterministic (non-randomized) algorithms, what worst-case running time (and \# of oracle queries) can we achieve for this problem?

■ We need $2^{m} / 2+1=2^{m-1}+1$ queries in the worst case, and $\Theta\left(2^{m}\right)$ time

Monte Carlo algorithm

$i=0$;
while $i<k$ do
randomly pick $j \in\left\{1, \ldots, 2^{m}\right\}$; query the oracle: $o_{j}:=O(j)$;
if $o_{j}=a$ then return j;
else
$i:=i+1 ;$ end
end
randomly pick $j \in\left\{1, \ldots, 2^{m}\right\}$; return j;

■ Runs for k rounds, so takes time $O(k \cdot m)$

- Probability of a correct answer: $1-(1 / 2)^{k+1}$
- Works for any value of k
- The running time does not vary randomly

■ Non-zero error probability
while True do
randomly pick $j \in\left\{1, \ldots, 2^{m}\right\}$; query the oracle: $o_{j}:=O(j)$; if $o_{j}=a$ then return j; end
end

- Probability of a correct answer (given that it halted): 1
- Expected running time $O(m)$:

$$
O(m) \cdot\left[1 \cdot 1 / 2+2 \cdot(1 / 2)^{2}+3 \cdot(1 / 2)^{3}+\cdots\right]=O(m) \quad \text { because } \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{2^{i}}=2
$$

Probabilistic Turing machines

Definition

Probabilistic Turing machines (PTM) are variants of (deterministic) TMs, where:

- There are two transition functions δ_{1}, δ_{2}.
- At each step, one of δ_{1}, δ_{2} is chosen randomly, both with probability $1 / 2$. (Each such choice is made independently.)
- (As halting states, it has an accept state $q_{\text {acc }}$ and a reject state $q_{\text {rej }}$.)
- $\mathbb{M}(x)$ denotes the random variable corresponding to the output of \mathbb{M} on input x.
- \mathbb{M} runs in time $T(n)$ if for every input x and every sequence of nondeterministic choices, \mathbb{M} halts within $T(|x|)$ steps, regardless of the random choices made.

Definition (BPTIME)

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A problem $L \subseteq\{0,1\}^{*}$ is in $\operatorname{BPTIME}(T(n))$ if there exists a PTM \mathbb{M} that runs in time $O(T(n))$, such that for each $x \in\{0,1\}^{*}$:

$$
\mathbb{P}[\mathbb{M}(x)=L(x)] \geq 2 / 3,
$$

where $L(x)=1$ if $x \in L$, and $L(x)=0$ if $x \notin L$.

- BP: Bounded-error Probabilistic
- These are Monte Carlo algorithms with two-sided (bounded) error

Definition (BPP)

$$
\operatorname{BPP}=\bigcup_{c \geq 1} \operatorname{BPTIME}\left(n^{c}\right) .
$$

Characterization of BPP

Theorem

A problem $L \subseteq\{0,1\}^{*}$ if and only if there exists a polynomial-time deterministic TM \mathbb{M} and a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for each $x \in\{0,1\}^{*}$:

$$
\underset{r \in_{R}\{0,1\}^{p(|x|)}}{\mathbb{P}}[\mathbb{M}(x, r)=L(x)] \geq 2 / 3
$$

(Here ϵ_{R} denotes (sampling from) the uniform distribution.)

- This is analogous to the verifier definition of NP
- Using a probabilistic interpretation of the certificates, rather than existentially quantifying over them

Definition (RTIME)

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A problem $L \subseteq\{0,1\}^{*}$ is in $\operatorname{RTIME}(T(n))$ if there exists a PTM \mathbb{M} that runs in time $O(T(n))$, such that for each $x \in\{0,1\}^{*}$:

$$
\begin{aligned}
& \text { if } x \in L \text {, then } \mathbb{P}[\mathbb{M}(x)=1] \geq 2 / 3, \\
& \text { if } x \notin L \text {, then } \mathbb{P}[\mathbb{M}(x)=0]=1
\end{aligned}
$$

- These are Monte Carlo algorithms with one-sided (bounded) error

Definition (RP)

$$
\operatorname{RP}=\bigcup_{c \geq 1} \operatorname{RTIME}\left(n^{c}\right)
$$

Definition (coRTIME)

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A problem $L \subseteq\{0,1\}^{*}$ is in $\operatorname{coRTIME}(T(n))$ if there exists a PTM \mathbb{M} that runs in time $O(T(n))$, such that for each $x \in\{0,1\}^{*}$:

$$
\begin{aligned}
& \text { if } x \in L \text {, then } \mathbb{P}[\mathbb{M}(x)=1]=1 \\
& \text { if } x \notin L \text {, then } \mathbb{P}[\mathbb{M}(x)=0] \geq 2 / 3
\end{aligned}
$$

- These are also Monte Carlo algorithms with one-sided (bounded) error

Definition (coRP)

$$
\operatorname{coRP}=\bigcup_{c \geq 1} \operatorname{coRTIME}\left(n^{c}\right), \quad \text { or equivalently: } \operatorname{coRP}=\{\bar{L} \mid L \in R P\}
$$

Definition (expected running time)

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function and let \mathbb{M} be a PTM. Then \mathbb{M} runs in expected time $T(n)$, if for each $x \in\{0,1\}^{*}$ it holds that $\mathbb{E}\left[\operatorname{time}_{\mathbb{M}}(x)\right] \leq T(|x|)$.

Definition (ZPTIME)

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function. A problem $L \subseteq\{0,1\}^{*}$ is in $\operatorname{ZPTIME}(T(n))$ if there exists a PTM \mathbb{M} that runs in expected time $O(T(n))$, such that for each $x \in\{0,1\}^{*}$, whenever \mathbb{M} halts on x then $\mathbb{M}(x)=L(x)$.

- These are Las Vegas algorithms

Definition (ZPP)

$$
\mathrm{ZPP}=\bigcup_{c \geq 1} \operatorname{ZPTIME}\left(n^{c}\right)
$$

- We used the constant $2 / 3$ in the definitions of BPP, etc.
- In fact, each constant $>1 / 2$ would work, and even $>1 / 2+|x|^{-c}$.
- We can make the error probability very small

Theorem (Error reduction for BPP)

Let $L \subseteq\{0,1\}^{*}$ be a decision problem, and suppose that there exists a polynomial-time PTM \mathbb{M} such that for each $x \in\{0,1\}^{*}, \mathbb{P}[\mathbb{M}(x)=L(x)] \geq 1 / 2+1 /|x|^{c}$.
Then for every constant $d>0$, there exists a polynomial-time PTM \mathbb{M}^{\prime} such that for each $x \in\{0,1\}^{*}, \mathbb{P}\left[\mathbb{M}^{\prime}(x)=L(x)\right] \geq 1-1 / 2^{\left(|x|^{d}\right)}=1-2^{-|x|^{d}}$.

■ Idea: run \mathbb{M} many times and output the majority answer

- $\mathrm{RP} \subseteq \mathrm{BPP}, \operatorname{coRP} \subseteq \mathrm{BPP}$
- RP $\subseteq \mathrm{NP}, \operatorname{coRP} \subseteq \operatorname{coNP}$

■ Homework!
■ $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$
■ Homework!

- BPP $\subseteq \mathrm{P} /$ poly
- Idea: by using error reduction, you can find some $r \in\{0,1\}^{p(n)}$ for each n that can be used as "certificate" to give the correct answer for each $x \in\{0,1\}^{n}$.
- $\mathrm{BPP} \subseteq \Sigma_{2}^{\mathrm{p}}, \mathrm{BPP} \subseteq \Pi_{2}^{\mathrm{p}}$
- Probabilistic algorithms
- Complexity classes BPP, RP, coRP, ZPP
- Approximation algorithms
- The PCP Theorem

