Computational Complexity

Exercise Session 7

Definition 1. Consider the representation of graphs where each graph G = (V, E) with n vertices v_1, \ldots, v_n is represented by a binary string x of length $\binom{n}{2}$. The bits in this string indicate whether the edges $\{v_1, v_2\}, \{v_1, v_3\}, \ldots, \{v_{n-1}, v_n\}$ are present in E. (In other words, strings x such that |x| is not equal to $\binom{n}{2}$ for any $n \in \mathbb{N}$ do not represent any graph.)

For example, the graph $G_0 = (\{v_1, v_2, v_3\}, \{\{v_1, v_2\}, \{v_2, v_3\}\})$ is represented by the string $x_0 = 101$.

Then consider the following sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of probability distributions over binary strings (representing graphs). Let $p = 1 - 2^{-10} = 1 - \frac{1}{1024} = \frac{1023}{1024}$. For each $n \in \mathbb{N}$, the string $x \in \{0, 1\}^n$ gets assigned the following probability $\mathcal{D}_n(x)$ by \mathcal{D}_n . Let $n_{x,1}$ be the number of 1's in x and let $n_{x,0}$ be the number of 0's in x. Then $\mathcal{D}_n(x) = p^{n_{x,1}} \cdot (1-p)^{n_{x,1}}$. In other words, each edge is present with probability p and is absent with probability (1-p).

Exercise 1. Consider the sequence $\mathcal{D} = {\mathcal{D}_n}_{n \in \mathbb{N}}$ of distributions from Definition 1.

- (a) Show that \mathcal{D} is P-samplable.
- (b) Consider the problem $3COL \subseteq \{0,1\}^*$ consisting of all strings x representing a graph that is 3-colorable. Show that $(3COL, \mathcal{D}) \in distP$.
 - Hint: find a polynomial-time computable condition that (i) is true for almost all inputs, and (ii) entails that the graph is not 3-colorable. Consider the algorithm that first checks this property, and if the graph does not have this property, does a brute-force search.

Exercise 2. Consider the variant \mathcal{D}' of the sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of distributions from Definition 1 where p = 1/2 (instead of 1023/1024). Solve Exercise 1 with \mathcal{D}' instead of \mathcal{D} .