# Computational Complexity 

Exercise Session 7

Definition 1. Consider the representation of graphs where each graph $G=(V, E)$ with $n$ vertices $v_{1}, \ldots, v_{n}$ is represented by a binary string $x$ of length $\binom{n}{2}$. The bits in this string indicate whether the edges $\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\}$ are present in $E$. (In other words, strings $x$ such that $|x|$ is not equal to $\binom{n}{2}$ for any $n \in \mathbb{N}$ do not represent any graph.)
For example, the graph $G_{0}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}\right\}\right)$ is represented by the string $x_{0}=101$.
Then consider the following sequence $\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$ of probability distributions over binary strings (representing graphs). Let $p=1-2^{-10}=1-1 / 1024=1023 / 1024$. For each $n \in \mathbb{N}$, the string $x \in\{0,1\}^{n}$ gets assigned the following probability $\mathcal{D}_{n}(x)$ by $\mathcal{D}_{n}$. Let $n_{x, 1}$ be the number of 1 's in $x$ and let $n_{x, 0}$ be the number of 0 's in $x$. Then $\mathcal{D}_{n}(x)=p^{n_{x, 1}} \cdot(1-p)^{n_{x, 1}}$. In other words, each edge is present with probability $p$ and is absent with probability $(1-p)$.

Exercise 1. Consider the sequence $\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$ of distributions from Definition 1 .
(a) Show that $\mathcal{D}$ is P -samplable.
(b) Consider the problem $3 C O L \subseteq\{0,1\}^{*}$ consisting of all strings $x$ representing a graph that is 3 -colorable. Show that $(3 C O L, \mathcal{D}) \in$ distP.

- Hint: find a polynomial-time computable condition that (i) is true for almost all inputs, and (ii) entails that the graph is not 3 -colorable. Consider the algorithm that first checks this property, and if the graph does not have this property, does a brute-force search.

Exercise 2. Consider the variant $\mathcal{D}^{\prime}$ of the sequence $\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$ of distributions from Definition 1 where $p=1 / 2$ (instead of $1023 / 1024$ ). Solve Exercise 1 with $\mathcal{D}^{\prime}$ instead of $\mathcal{D}$.

