Computational Complexity

Exercise Session 6

Exercise 1. Prove that $\mathsf{RP} \subseteq \mathsf{BPP}$ and that $\mathsf{coRP} \subseteq \mathsf{BPP}$.

Exercise 2.

- (a) Show that $\mathsf{RP} \subseteq \mathsf{NP}$.
- (b) Show that $ZPP = RP \cap coRP$.
 - *Hint:* use Markov's inequality for showing that $ZPP \subseteq RP \cap coRP$. If X is a non-negative random variable and a > 0, then:

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$$

Exercise 3. Prove that $\mathsf{BPP} \subseteq \mathsf{PSPACE}$.

Exercise 4. CLIQUE is the problem of deciding, given a graph G = (V, E) and a natural number $k \in \mathbb{N}$, whether there exists a set $C \subseteq V$ such that |C| = k and for all $c_1, c_2 \in C$ with $c_1 \neq c_2$ it holds that $\{c_1, c_2\} \in E$.

For every $\rho < 1$, an algorithm A is called a ρ -approximation algorithm for MAX-CLIQUE if for every graph G = (V, E), the algorithms outputs a clique $C \subseteq V$ of G of size at least $\rho \cdot \mu_G$, where μ_G is the maximum size of any clique of G. Show that for each $\rho < 1$, if there exists a polynomial-time ρ -approximation algorithm for MAX-CLIQUE, then P = NP.