Computational Complexity

Exercise Session 5

Exercise 1. A decision problem $L \subseteq \{0,1\}^*$ is *sparse* if there exists a polynomial p such that for every $n \in \mathbb{N}$ it holds that $|L \cap \{0,1\}^n| \leq p(n)$. Show that every sparse decision problem is in P/poly .

Definition 1. $\mathsf{P}^{\mathsf{NP}[\log]}$ is the class of all decision problems $L \subseteq \{0,1\}^*$ for which there exists a polynomial-time deterministic oracle TM M and an oracle language $O \in \mathsf{NP}$ such that \mathbb{M}^O decides L, and a function $f(n) : \mathbb{N} \to \mathbb{N}$ that is $O(\log n)$ such that for each input $x \in \{0,1\}^*$, $\mathbb{M}^O(x)$ makes at most f(|x|) queries to the oracle O.

Exercise 2. Show that the following problem is in $\mathsf{P}^{\mathsf{NP}[\log]}$:

{ $\varphi \mid \varphi$ is a propositional logic formula, and the maximum number m of variables among var(φ) that are set to true in any satisfying truth assignment of φ is odd. }