Computational Complexity

Lecture 14

March 20, 2020 Universiteit van Amsterdam

Plan for today

- 1. Recap most of the topics that we discussed in the course
- 2. Talk about any questions that you still have

P, NP, NP-completeness

Definition (The classes P and NP)

$$\mathsf{P} = \bigcup_{c \ge 1} \mathsf{DTIME}(n^c) \qquad \qquad \mathsf{NP} = \bigcup_{c \ge 1} \mathsf{NTIME}(n^c)$$

Definition

A polynomial-time reduction from $L_1 \subseteq \{0,1\}^*$ to $L_2 \subseteq \{0,1\}^*$ is a polynomial-time computable function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ such that for each $x \in \{0,1\}^*$ it holds that $x \in L_1$ if and only if $f(x) \in L_2$.

Definition

A problem $L \subseteq \{0, 1\}^*$ is *NP-complete* if $L \in NP$ and every problem $L' \in NP$ can be polynomial-time reduced to L.

Theorem (Cook-Levin)

3SAT is NP-complete.

Time Hierarchy Theorems & Relativization

Theorem (Deterministic Time Hierarchy)

If f, g are time-constructible functions such that $f(n) \log f(n)$ is o(g(n)), then:

 $DTIME(f(n)) \subsetneq DTIME(g(n))$

Theorem (Nondeterministic Time Hierarchy)

If f, g are time-constructible functions such that f(n + 1) is o(g(n)), then: $NTIME(f(n)) \subsetneq NTIME(g(n))$

• So $P \subsetneq EXP$ and $NP \subsetneq NEXP$.

Theorem (Baker-Gill-Solovay)

There exist oracles $A, B \subseteq \{0,1\}^*$ such that $P^A = NP^A$ and $P^B \neq NP^B$.

Space complexity

Definition (The classes L, NL, PSPACE, NPSPACE)

 $L = SPACE(\log n) \qquad NL = NSPACE(\log n)$ $PSPACE = \bigcup_{c \ge 1} SPACE(n^c) \qquad NPSPACE = \bigcup_{c \ge 1} NSPACE(n^c)$

► NL-completeness: based on *logspace reductions*.

Theorem (Space Hierarchy)

If f, g are space-constructible functions such that f(n) is o(g(n)), then: $SPACE(f(n)) \subsetneq SPACE(g(n))$

► So $L \subsetneq$ PSPACE.

Theorem (Savitch)

PSPACE = NPSPACE.

Polynomial Hierarchy (PH)

Definition (The classes Σ_i^p)

 $L \subseteq \{0,1\}^*$ is in Σ_2^p if there exists a polynomial-time TM \mathbb{M} and a polynomial q such that for all $x \in \{0,1\}^*$:

 $x \in L$ iff there exists $u_1 \in \{0, 1\}^{q(|x|)}$ such that for all $u_2 \in \{0, 1\}^{q(|x|)}$ it holds that $\mathbb{M}(x, u_1, u_2) = 1$. (Similarly for all i > 1.)

Definition (The class PH)

$$\mathsf{PH} = \bigcup_{i \ge 1} \Sigma_i^\mathsf{p}$$

Definition (The class P/poly)

$$\mathsf{P}/\mathsf{poly} = \bigcup_{c \ge 1} \mathsf{SIZE}(n^c)$$

P/poly consists of all $L \subseteq \{0,1\}^*$ that can be decided in polynomial time with polynomial-size advice $\{\alpha_n\}_{n\in\mathbb{N}}$.

Theorem (Karp-Lipton)

If $NP \subseteq P/poly$, then $PH = \Sigma_2^p$.

Probabilistic computation

Definition (The classes BPP, RP, ZPP)

 $\begin{aligned} \mathsf{BPP} &= \bigcup_{c \geq 1} \mathsf{BPTIME}(n^c) \\ \mathsf{RP} &= \bigcup_{c \geq 1} \mathsf{RTIME}(n^c) \\ \mathsf{ZPP} &= \bigcup_{c > 1} \mathsf{ZPTIME}(n^c) \end{aligned}$

- BPP: two-sided bounded error, polynomial time
- ▶ RP: one-sided bounded error, polynomial time
- ZPP: zero-sided error, expected running time polynomial

Approximation algorithms & PCP Theorem

Definition (ρ -Approximation algorithms)

Let $\rho < 1$. A ρ -approximation algorithm A for an optimization problem returns for every input $x \in \{0, 1\}^*$ a solution with *quality* at least $\rho \cdot val(x)$, where val(x) denotes the quality of an optimal solution for x.

Theorem (PCP)

There exists $\rho < 1$ such that for every $L \in NP$, there is a polynomial-time function f mapping strings to 3CNF formulas such that:

if
$$x \in L$$
, then $val(f(x)) = 1$
if $x \notin L$, then $val(f(x)) < \rho$

▶ If for every $\rho < 1$ there is a polynomial-time ρ -approximation algorithm for MAX3SAT, then P = NP.

Subexponential-time & ETH

We can solve 3SAT in time $2^{O(n)}$, where *n* is the number of propositional variables in the input.

Definition (δ_q)

For $q \ge 3$, let δ_q be the infimum of the set of constants c for which there exists an algorithm solving qSAT in time $O(2^{cn}) \cdot m^{O(1)}$, where n is the number of variables in the qSAT input and m the number of clauses.

Definition (ETH)

Exponential-Time Hypothesis (conjecture): $\delta_3 > 0$.

► The ETH implies that there is no 2^{o(n)}-time algorithm algorithm that solves 3SAT, and therefore also that P ≠ NP.

Average-case complexity

Definition (Distributional problems)

A distributional problem $\langle L, \mathcal{D} \rangle$ consists of a language $L \subseteq \{0, 1\}^*$ and a sequence $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$ of probability distributions, where each \mathcal{D}_n is a probability distribution over $\{0, 1\}^n$.

Definition (The class distP)

 $\langle L, D \rangle$ is in the class distP if there exists a TM \mathbb{M} that decides L and a constant $\epsilon > 0$ such that for all $n \in \mathbb{N}$:

$$\mathbb{E}_{x \in_{\mathsf{R}} \mathcal{D}_n} [\operatorname{time}_{\mathbb{M}}(x)^{\epsilon}] \text{ is } O(n).$$

Definition (The classes distNP and sampNP)

distNP: all $\langle L, D \rangle$ for which $L \in NP$ and D is P-computable. sampNP: all $\langle L, D \rangle$ for which $L \in NP$ and D is P-samplable.

Any further questions?