Computational Complexity

Lecture 1

February 5, 2020 Universiteit van Amsterdam

Practical Information

- Ronald de Haan (R.deHaan@uva.nl)
- Boas Kluiving (R.B.Kluiving@uva.nl)
- Course web page: https://staff.science.uva.nl/r.dehaan/complexity2020/
- Canvas page: https://canvas.uva.nl/courses/10928
- Book: Computational Complexity: A Modern Approach, by Sanjeev Arora & Boaz Barak, 2009. (http://www.cs.princeton.edu/theory/complexity/)

What is Computational Complexity?

The study of what you can compute with limited resources

- Resources, e.g.: time, memory space, random bits
- Computability theory tells us what can be computed in principle
 Computational complexity theory tells us what can be computed realistically

Central notions:

The resource use of an algorithm, in the worst case
 Computational problems, and algorithms solving these problems
 How does the resource use of algorithms scale?
 ...

What is Computational Complexity?

 Distinguish different degrees of computational difficulty: different complexity classes

(a whole zoo of complexity classes: https://complexityzoo.uwaterloo.ca/Complexity_Zoo)

What is Computational Complexity?

 Distinguish different degrees of computational difficulty: different complexity classes

(a whole zoo of complexity classes: https://complexityzoo.uwaterloo.ca/Complexity_Zoo)

 Central question: the P versus NP problem (one of the \$1 Million Millennium Prize Problems)

Relation to Other Fields

• Computation plays a role nearly everywhere..

- Therefore, computational complexity is relevant for many areas; for example:
 - Computer science
 - Cryptography
 - Economics, game theory
 - Artificial intelligence
 - Biology
 - Scheduling, vehicle routing
 - ▶ ...

Some courses that are related

- Recursion Theory
- Kolmogorov Complexity
- Knowledge Representation and Reasoning
- Quantum Computing
- Machine Learning Theory
- Computational Social Choice

Illustration: Graph k-Coloring

- You are given an undirect graph
 - ► Nodes / vertices, with edges between them.
- ► The task is to color each node with a color in {1, 2, ..., k} so that no two connected nodes have the same color

Illustration: Graph k-Coloring

- You are given an undirect graph
 - ► Nodes / vertices, with edges between them.
- ► The task is to color each node with a color in {1, 2, ..., k} so that no two connected nodes have the same color
- This can be used to model many applications
 - For example, nodes are regions with their own radio station, colors are radio frequencies, and two nodes are connected if the regions border each other
 - The task is to assign radio frequencies without conflict (in the border areas)

Color this graph with 2 colors!

Color this graph with 2 colors!

Now, color this graph with 3 colors!

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- ► Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2		
5		
10		
20		
50		
100		
1000		

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- ► Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	
5		
10		
20		
50		
100		
1000		

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- ► Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5		
10		
20		
50		
100		
1000		

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- ► Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	
10		
20		
50		
100		
1000		

- Important difference between algorithms that run in time, say, n^2 vs. algorithms that run in time, say, 2^n
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10		
20		
50		
100		
1000		

- Important difference between algorithms that run in time, say, n^2 vs. algorithms that run in time, say, 2^n
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	
20		
50		
100		
1000		

- Important difference between algorithms that run in time, say, n^2 vs. algorithms that run in time, say, 2^n
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20		
50		
100		
1000		

- Important difference between algorithms that run in time, say, n^2 vs. algorithms that run in time, say, 2^n
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	
50		
100		
1000		

- Important difference between algorithms that run in time, say, n^2 vs. algorithms that run in time, say, 2^n
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	1.75 min
50		
100		
1000		

- Important difference between algorithms that run in time, say, n^2 vs. algorithms that run in time, say, 2^n
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	1.75 min
50	0.25 sec	
100		
1000		

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	1.75 min
50	0.25 sec	8.4 centuries
100		
1000		

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	1.75 min
50	0.25 sec	8.4 centuries
100	1.00 sec	
1000		

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	1.75 min
50	0.25 sec	8.4 centuries
100	1.00 sec	$9.4 imes10^{17}$ years
1000		

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	1.75 min
50	0.25 sec	8.4 centuries
100	1.00 sec	$9.4 imes10^{17}$ years
1000	1.67 min	

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- Illustration (time needed for 10.000 steps per second):

п	n ² steps	2 ⁿ steps
2	0.02 msec	0.02 msec
5	0.15 msec	0.19 msec
10	0.01 sec	0.10 sec
20	0.04 sec	1.75 min
50	0.25 sec	8.4 centuries
100	1.00 sec	$9.4 imes10^{17}$ years
1000	1.67 min	$7.9 imes10^{288}$ years

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- ▶ Illustration (time needed for 10¹⁰ steps per second):

п	n ² steps	2 ⁿ steps
2	0.00000002 msec	0.00000002 msec
5	0.00000015 msec	0.00000019 msec
10	0.00001 msec	0.0001 msec
20	0.00004 msec	0.10 msec
50	0.00025 msec	31.3 hours
100	0.001 msec	$9.4 imes10^{11}$ years
1000	0.100 msec	$7.9 imes10^{282}$ years

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- ▶ Illustration (time needed for 10¹⁰ steps per second):

п	n ² steps	2 ⁿ steps
2	0.00000002 msec	0.00000002 msec
5	0.00000015 msec	0.00000019 msec
10	0.00001 msec	0.0001 msec
20	0.00004 msec	0.10 msec
50	0.00025 msec	31.3 hours
100	0.001 msec	$9.4 imes10^{11}$ years
1000	0.100 msec	$7.9 imes10^{282}$ years

