Computational Complexity

Homework Sheet 6

Hand in via Canvas before March 23 at 17:00

Exercise 1 (2pt). Show that the following problem is NP-complete.

RED-BLUE DOMINATING SET (RBDS)

Instance: An undirected graph G = (V, E), where V is partitioned into R and B, and a positive integer $k \in \mathbb{N}$.

Question: Is there a subset $D \subseteq B$ of size at most k such that for all $v \in R$ it holds that v is adjacent in G to some $v' \in D$?

That is, RBDS is the following language:

$$\begin{array}{ll} \text{RBDS} = \{ (G, R, B, k) \mid & G = (V, E) \text{ is an undirected graph}, \ V = R \cup B, \ R \cap B = \emptyset, \ k \in \mathbb{N}, \\ & \text{there exists some } D \subseteq B \text{ of size at most } k \text{ such that} \\ & \text{for each } v \in R \text{ there is some } v' \in D \text{ such that } v \text{ and } v' \text{ are adjacent in } G \end{array} \}$$

Exercise 2 (2pt). Show that P = NP if and only if there exists a polynomial-time algorithm A that, given an undirected graph G = (V, E) and a positive integer $k \in \mathbb{N}$:

- If G has a clique $C \subseteq V$ of size k, then A outputs such a clique C; and
- If G has no clique of size k, then A is allowed to output *anything*.

Definition 1. The complexity class Θ_2^p consists of all decision problems L for which there exists a constant c and a polynomial-time oracle Turing machine \mathbb{M} that, when given access to an oracle $O \in \mathbb{NP}$, decides L, and for each input x it queries the oracle O at most $c \cdot \log |x|$ times.

Exercise 3 (3pt). Given a set $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ of propositional formulas, we say that a set $\Phi' \subseteq \Phi$ is a *largest satisfiable subset of* Φ if (1) Φ' is satisfiable—i.e., there exists a single truth assignment α that satisfies all $\varphi \in \Phi'$, and (2) all $\Phi'' \subseteq \Phi$ with $|\Phi''| > |\Phi'|$ are not satisfiable.

Show that the problem MAX-SAT-SUBSET-ODD is Θ_2^p -complete (under polynomial-time reductions):

MAX-SAT-SUBSET-ODD

Instance: A set $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ of propositional formulas.

Question: Is the size k of the largest satisfiable subset of Φ odd?

You may use the fact that the following problem MAX-MODEL-ODD is Θ_2^p -complete:

Max-Model-Odd

Instance: A propositional formula φ with variables x_1, \ldots, x_n .

Question: Do the truth assignments $\alpha : \{x_1, \ldots, x_n\} \to \{0, 1\}$ that set a maximal number of variables among x_1, \ldots, x_n to true among those α that satisfy φ , set an odd number of variables among x_1, \ldots, x_n to true?

Exercise 4 (3pt). Show that the problem LARGE-MINIMAL-UNSAT-SUBSET is Σ_2^{p} -complete (under polynomial-time reductions):

LARGE-MINIMAL-UNSAT-SUBSET

Instance: A set $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ of propositional formulas, and an integer $k \in \mathbb{N}$.

Question: Is there some $\Phi' \subseteq \Phi$ of size k that is not satisfiable—that is, for which there exists no truth assignment α that satisfies each formula $\varphi \in \Phi'$ —such that all $\Phi'' \subsetneq \Phi'$ are satisfiable?

You may use the fact that the following problem $\Sigma_2 SAT(DNF)$ is Σ_2^p -complete:

 $\Sigma_2 SAT(DNF)$

Instance: An instance $\exists \overline{u}_1 \forall \overline{u}_2 \psi$ of Σ_2 SAT, where ψ is in DNF. Question: Is $\exists \overline{u}_1 \forall \overline{u}_2 \psi$ true?