Computational Complexity

Homework Sheet 5

Hand in via Canvas before March 16 at 17:00

Exercise 1 (5pt). The problem MAX2SAT consists of all tuples (φ, k) where φ is a 2CNF formula and $k \in \mathbb{N}$ such that there exists a truth assignment $\alpha : \operatorname{var}(\varphi) \to \{0, 1\}$ such that α satisfies at least k clauses of φ . (Note: here we define a 2CNF formula as a CNF formula where each clause contains **at most** 2 literals. Note also: φ might contain several copies of the same clause.)

For every $\rho < 1$, an algorithm A is called a ρ -approximation algorithm for MAX2SAT if for every 2CNF formula ψ with m clauses, $A(\psi)$ outputs a truth assignment satisfying at least $\rho \cdot \mu_{\psi}$ of ψ 's clauses, where μ_{ψ} is the maximum number of clauses of ψ satisfied by any truth assignment.

Consider the following polynomial-time reduction f from 3SAT to MAX2SAT:

Let $\varphi = c_1 \wedge \cdots \wedge c_m$ be a 3CNF formula with clauses c_1, \ldots, c_m and containing the propositional variables p_1, \ldots, p_u . Then $f(\varphi) = (\psi, k)$ is defined as follows.

- The formula ψ will contain the propositional variables p_1, \ldots, p_u , as well as the new variables q_1, \ldots, q_m .
- For each clause $c_j = l_{j,1} \vee l_{j,2} \vee l_{j,3}$ of φ , we add the following 10 clauses to ψ :

$$\begin{aligned} &(l_{j,1}), (l_{j,2}), (l_{j,3}), (q_j), \\ &(\neg l_{j,1} \lor \neg l_{j,2}), (\neg l_{j,1} \lor \neg l_{j,3}), (\neg l_{j,2} \lor \neg l_{j,3}), \\ &(l_{j,1} \lor \neg q_j), (l_{j,2} \lor \neg q_j), (l_{j,3} \lor \neg q_j). \end{aligned}$$

That is ψ consists of the conjunction of the 10m resulting clauses.

- We let k = 7m.
- (a) Show that this reduction is correct—i.e., that $\varphi \in 3SAT$ if and only if $(\psi, k) \in MAX2SAT$.
- (b) Show that if there is a polynomial-time ρ -approximation algorithm for MAX2SAT for each $\rho < 1$, then P = NP.

- *Hint:* use the PCP Theorem and the function f described above.

(c) Give a polynomial-time $\frac{1}{2}$ -approximation algorithm for MAX2SAT.

Exercise 2 (4pt). Consider the following polynomial-time reduction f from 3SAT to 3SAT. Let φ be a 3CNF formula with clauses c_1, \ldots, c_m and containing the propositional variables p_1, \ldots, p_n . Then $f(\varphi)$ is defined as the following 3CNF formula:

$$f(\varphi) = \varphi \wedge \left(\bigwedge_{j=1}^{m} q_j\right) \wedge \left(\bigwedge_{j=1}^{m} \bigwedge_{j'=1}^{m} (q_j \vee q_{j'})\right),$$

where each of the variables q_j is a fresh variable that does not occur in φ . (Note: here we define a 3CNF formula as a CNF formula where each clause contains **at most** 3 literals.)

Let F be the following set of 3CNF formulas:

 $F = \{ f(\varphi) \mid \varphi \text{ is a 3CNF formula } \},\$

and let FUNNY-3SAT be the following decision problem:

Funny-3SAT =
$$F \cap 3$$
SAT

- (a) Show that FUNNY-3SAT is solvable in time $2^{O(\sqrt{|x|})}$, where |x| denotes the input size.
- (b) Show that FUNNY-3SAT is not solvable in time $2^{o(\sqrt{|x|})}$, where |x| denotes the input size, assuming that the ETH is true.

Exercise 3 (1pt). Give an example of a decision problem that is not solvable in polynomial time (assuming $P \neq NP$), yet that is solvable in time $2^{o(|x|)}$, where |x| denotes the input size.