
Computational Complexity

Homework Sheet 2

Hand in via Canvas before February 24 at 17:00

Exercise 1 (2pt). Let A ⊆ {0, 1}∗ be an NP-complete language. Let p be a polynomial and let MA be
a polynomial-time Turing machine such that, for all x ∈ {0, 1}∗:

x ∈ A if and only if there exists some u ∈ {0, 1}p(|x|) such that MA(x, u) = 1.

(a) Define the set B = { 〈x, z〉 | there exists z′ ∈ {0, 1}∗ such that |zz′| = p(|x|) and MA(x, zz′) = 1 }.
Prove that B is in NP.

(b) Suppose that we have access to A as an oracle. Basically this means that we have a subroutine
that, given a string y, tells in a single step whether y ∈ A. (See Definition 3.4 of Arora & Barak,
2009.) Construct a polynomial-time Turing machine Msearch (with access to an A-oracle) that,
given x ∈ {0, 1}∗, if x ∈ A outputs a string u such that MA(x, u) = 1 and if x 6∈ A outputs 0.
(Describe how Msearch works at a high level.) Use (a).

• Hint: use the fact that A is NP-complete.

Exercise 2 (2pt). Let A ⊆ {0, 1}∗ be a language. When a Turing machine M has access to an A-oracle,
we write MA. We say that A is auto-reducible if there is a polynomial-time Turing machine MA with
oracle access to A such that for all x ∈ {0, 1}∗:

x ∈ A if and only if MA(x) = 1,

with the special requirement that on input x the Turing machine MA is not allowed to query the oracle A
for x.

Suppose that A is NP-complete. Prove that A is auto-reducible. Use Exercise 1.

Exercise 3 (3pt). Prove that NTIME(n) 6= P.

• NTIME(n) can be characterized as the set of all decision problems that can be verified in linear
time with a linear-size certificate. That is, A ∈ NTIME(n) if and only if there is a linear-time
Turing machine M and a constant c such that for all x ∈ {0, 1}∗ it holds that x ∈ A if and only if
there exists some u ∈ {0, 1}c·|x| such that M(x, u) = 1. You are allowed to use this characterization
of NTIME(n).

• Hint: Use the Nondeterministic Time Hierarchy Theorem.

Exercise 4 (3pt). In this exercise, we will construct a decision problem A ⊆ {0}∗ that is not auto-
reducible, using diagonalization. (For a definition of auto-reducibility, see the previous homework sheet.)

(a) Consider the function b : N→ N such that b(0) = 1 and for each n > 0 it holds that b(n) = 2b(n−1).
Show that there exists some i0 such that for all i ≥ i0 it holds that b(i) > b(i− 1)i−1.

(b) Let M be a polynomial-time oracle Turing machine that—when given input x ∈ {0}∗—does not
query x to the oracle. Show that there exists some i such that M = Mi, and MO

i runs in time at
most ni for all oracles O.

– Hint: Remember that we can choose our representation scheme i 7→ Mi in such a way that
every Turing machine has infinitely many representations.

1

(c) Suppose that MO
i —from (b)—is given the string 0b(i) as input. What can you say about the size

of the queries that MO
i makes to O?

(d) Construct a set A ⊆ {0}∗ that is not auto-reducible. Construct A in stages Ai such that A =⋃
i≥1 Ai. Recursively define Ai ⊆ {0}b(i) in such a way that A is not auto-reducible by construction.

Make sure to prove that the set is not auto-reducible.

– Hint: suppose you have constructed A1, . . . , Ai−1. Let A≤i−1 =
⋃

1≤j≤i−1 Aj . Consider the

behavior of machine MA≤i−1

i with oracle access to A≤i−1 when given input 0b(i)—that does

not query 0b(i). Based on the output of MA≤i−1

i on 0b(i), choose whether 0b(i) is in Ai or not.

2

