Computational Complexity

Homework Sheet 2

Hand in via Canvas before February 24 at 17:00

Exercise 1 (2pt). Let $A \subseteq \{0,1\}^*$ be an NP-complete language. Let p be a polynomial and let \mathbb{M}_A be a polynomial-time Turing machine such that, for all $x \in \{0,1\}^*$:

 $x \in A$ if and only if there exists some $u \in \{0,1\}^{p(|x|)}$ such that $\mathbb{M}_A(x,u) = 1$.

- (a) Define the set $B = \{ \langle x, z \rangle \mid \text{there exists } z' \in \{0, 1\}^* \text{ such that } |zz'| = p(|x|) \text{ and } \mathbb{M}_A(x, zz') = 1 \}.$ Prove that B is in NP.
- (b) Suppose that we have access to A as an oracle. Basically this means that we have a subroutine that, given a string y, tells in a single step whether $y \in A$. (See Definition 3.4 of Arora & Barak, 2009.) Construct a polynomial-time Turing machine $\mathbb{M}_{\text{search}}$ (with access to an A-oracle) that, given $x \in \{0, 1\}^*$, if $x \in A$ outputs a string u such that $\mathbb{M}_A(x, u) = 1$ and if $x \notin A$ outputs 0. (Describe how $\mathbb{M}_{\text{search}}$ works at a high level.) Use (a).
 - *Hint:* use the fact that A is NP-complete.

Exercise 2 (2pt). Let $A \subseteq \{0,1\}^*$ be a language. When a Turing machine \mathbb{M} has access to an A-oracle, we write \mathbb{M}^A . We say that A is *auto-reducible* if there is a polynomial-time Turing machine \mathbb{M}^A with oracle access to A such that for all $x \in \{0,1\}^*$:

$$x \in A$$
 if and only if $\mathbb{M}^A(x) = 1$

with the special requirement that on input x the Turing machine \mathbb{M}^A is not allowed to query the oracle A for x.

Suppose that A is NP-complete. Prove that A is auto-reducible. Use **Exercise 1**.

Exercise 3 (3pt). Prove that $NTIME(n) \neq P$.

- NTIME(n) can be characterized as the set of all decision problems that can be verified in linear time with a linear-size certificate. That is, $A \in \text{NTIME}(n)$ if and only if there is a linear-time Turing machine \mathbb{M} and a constant c such that for all $x \in \{0,1\}^*$ it holds that $x \in A$ if and only if there exists some $u \in \{0,1\}^{c \cdot |x|}$ such that $\mathbb{M}(x, u) = 1$. You are allowed to use this characterization of NTIME(n).
- *Hint:* Use the Nondeterministic Time Hierarchy Theorem.

Exercise 4 (3pt). In this exercise, we will construct a decision problem $A \subseteq \{0\}^*$ that is not auto-reducible, using diagonalization. (For a definition of auto-reducibility, see the previous homework sheet.)

- (a) Consider the function $b : \mathbb{N} \to \mathbb{N}$ such that b(0) = 1 and for each n > 0 it holds that $b(n) = 2^{b(n-1)}$. Show that there exists some i_0 such that for all $i \ge i_0$ it holds that $b(i) > b(i-1)^{i-1}$.
- (b) Let \mathbb{M} be a polynomial-time oracle Turing machine that—when given input $x \in \{0\}^*$ —does not query x to the oracle. Show that there exists some i such that $\mathbb{M} = \mathbb{M}_i$, and \mathbb{M}_i^O runs in time at most n^i for all oracles O.
 - *Hint:* Remember that we can choose our representation scheme $i \mapsto M_i$ in such a way that every Turing machine has infinitely many representations.

- (c) Suppose that \mathbb{M}_i^O —from (b)—is given the string $0^{b(i)}$ as input. What can you say about the size of the queries that \mathbb{M}_i^O makes to O?
- (d) Construct a set $A \subseteq \{0\}^*$ that is not auto-reducible. Construct A in stages A_i such that $A = \bigcup_{i \ge 1} A_i$. Recursively define $A_i \subseteq \{0\}^{b(i)}$ in such a way that A is not auto-reducible by construction. Make sure to prove that the set is not auto-reducible.
 - *Hint:* suppose you have constructed A_1, \ldots, A_{i-1} . Let $A_{\leq i-1} = \bigcup_{1 \leq j \leq i-1} A_j$. Consider the behavior of machine $\mathbb{M}_i^{A_{\leq i-1}}$ with oracle access to $A_{\leq i-1}$ when given input $0^{b(i)}$ —that does not query $0^{b(i)}$. Based on the output of $\mathbb{M}_i^{A_{\leq i-1}}$ on $0^{b(i)}$, choose whether $0^{b(i)}$ is in A_i or not.