Computational Complexity

Handout – Lecture 9

Definition 1 (Probabilistic TMs). *Probabilistic Turing machines (PTMs)* are variants of (deterministic) Turing machines, where a few elements are modified.

- Instead of one halting state q_{halt} , there are two halting states q_{acc} (the *accept state*) and q_{rej} (the *reject state*).
- Instead of a single transition function δ , there are two transition functions δ_1, δ_2 .
- To execute a PTM on an input x, at each step, we use the transition function δ_1 with probability 1/2 and the transition function δ_2 with probability 1/2. At each step, this choice is made independently of all previous choices.
- The TM outputs only 0 (when halting in q_{acc}) or 1 (when halting in q_{rej}). We denote by $\mathbb{M}(x)$ the random variable corresponding to the value that the machine \mathbb{M} outputs when executed on x.
- Let $T : \mathbb{N} \to \mathbb{N}$. The TM runs in time T(n) if for every input x the machine halts after at most T(|x|) steps, regardless of the random choices that it makes.

Definition 2 (BPTIME, BPP). Let $T : \mathbb{N} \to \mathbb{N}$ be a function, and $L \subseteq \{0, 1\}^*$ be a language. We say that a PTM \mathbb{M} decides L in time T(n) if for every $x \in \{0, 1\}^*$, \mathbb{M} halts in T(|x|) steps, regardless of its random choices, and $\Pr[\mathbb{M}(x) = L(x)] \ge 2/3$.

The class BPTIME(T(n)) is the set of all languages decided by PTMs in time O(T(n)).

The class BPP is defined as follows:

$$BPP = \bigcup_{c \ge 1} BPTIME(n^c)$$

Definition 3 (BPP, alternative definition). A language $L \subseteq \{0, 1\}^*$ is in BPP if there exists a polynomialtime TM M and a polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0, 1\}^*$:

$$\Pr_{r \in B_{\{0,1\}}^{p(|x|)}}[\mathbb{M}(x,r) = L(x)] \ge 2/3$$

Definition 4 (RTIME, RP, coRP). Let $T : \mathbb{N} \to \mathbb{N}$ be a function. The class $\operatorname{RTIME}(T(n))$ contains every language $L \subseteq \{0,1\}^*$ for which there exists a PTM \mathbb{M} running in time O(T(n)) such that:

$$\begin{array}{ll} \text{if } x \in L, & \text{then } \Pr[\mathbb{M}(x) = 1] \geq 2/3 \\ \text{if } x \not\in L, & \text{then } \Pr[\mathbb{M}(x) = 0] = 1 \end{array}$$

The class RP is defined as follows:

$$\operatorname{RP} = \bigcup_{c \ge 1} \operatorname{RTIME}(n^c)$$

The class coRTIME(T(n)) contains every language $L \subseteq \{0, 1\}^*$ for which there exists a PTM M running in time O(T(n)) such that:

if
$$x \in L$$
, then $\Pr[\mathbb{M}(x) = 1] = 1$
if $x \notin L$, then $\Pr[\mathbb{M}(x) = 0] \ge 2/3$

The class coRP is defined as follows:

$$coRP = \bigcup_{c \ge 1} coRTIME(n^c)$$

Alternatively:

$$coRP = \{ \overline{L} \mid L \in RP \}$$

Definition 5 (ZTIME, ZPP). Let $T : \mathbb{N} \to \mathbb{N}$ be a function. The class ZTIME(T(n)) contains every language $L \subseteq \{0, 1\}^*$ for which there exists a PTM \mathbb{M} running in expected time O(T(n)) such that for every input $x \in \{0, 1\}^*$, whenever \mathbb{M} halts on x, the output of \mathbb{M} is exactly L(x).

The class ZPP is defined as follows:

$$\text{ZPP} = \bigcup_{c \ge 1} \text{ZTIME}(n^c)$$