Definition 1 (Circuits). An \(n \)-input single-output Boolean circuit \(C \) is a directed acyclic graph with:

- \(n \) sources (nodes with no incoming edges), labelled 1 to \(n \), and
- one sink (a node with no outgoing edges).

All non-source vertices are called \emph{gates}, and are labelled with \(\land \), \(\lor \), or \(\neg \):

- \(\land \)-gates and \(\lor \)-gates have in-degree 2 (exactly two incoming edges),
- \(\neg \)-gates have in-degree 1 (exactly one incoming edge).

If \(C \) is an \(n \)-input single-output Boolean circuit and \(x \in \{0,1\}^n \) is a string, then the output \(C(x) \) of \(C \) on \(x \) is defined by plugging in \(x \) in the source nodes and applying the operators of the gates, and taking for \(C(x) \) the resulting value in \(\{0,1\} \) of the sink gate.

Definition 2 (Circuit families). Let \(t : \mathbb{N} \rightarrow \mathbb{N} \) be a function. A \(t(n) \)-size circuit family is a sequence \(\{C_n\}_{n \in \mathbb{N}} \) of Boolean circuits, where each \(C_n \) has \(n \) inputs and a single output, and \(|C_n| \leq t(n) \) for each \(n \in \mathbb{N} \).

Definition 3 (SIZE(\(t(n) \))). Let \(t : \mathbb{N} \rightarrow \mathbb{N} \) be a function. A language \(L \subseteq \{0,1\}^* \) is in \(\text{SIZE}(t(n)) \) if there exists a constant \(c \in \mathbb{N} \) and a \((c \cdot t(n)) \)-size circuit family \(\{C_n\}_{n \in \mathbb{N}} \) such that for each \(x \in \{0,1\}^* \):

\[
x \in L \iff C_n(x) = 1, \text{ where } n = |x|.
\]

Definition 4 (TIME(\(t(n))/a(n) \)). Let \(t, a : \mathbb{N} \rightarrow \mathbb{N} \) be functions. The class \(\text{DTIME}(t(n))/a(n) \) of languages decidable by \(O(t(n)) \)-time Turing machines with \(a(n) \) bits of advice contains every language \(L \subseteq \{0,1\}^* \) such that there exists a sequence \(\{\alpha_n\}_{n \in \mathbb{N}} \) with \(\alpha_n \in \{0,1\}^{a(n)} \) for each \(n \in \mathbb{N} \) and an \(O(t(n)) \)-time deterministic Turing machine \(M \) such that for each \(x \in \{0,1\}^* \):

\[
x \in L \iff M(x, \alpha_n) = 1, \text{ where } n = |x|.
\]