Computational Complexity

Handout – Lecture 8

Definition 1 (Circuits). An *n*-input single-output Boolean circuit C is a directed acyclic graph with:

- n sources (nodes with no incoming edges), labelled 1 to n, and
- one sink (a node with no outgoing edges).

All non-source vertices are called *gates*, and are labelled with \land , \lor , or \neg :

- \wedge -gates and \vee -gates have in-degree 2 (exactly two incoming edges),
- ¬-gates have in-degree 1 (exactly one incoming edge).

If C is an n-input single-output Boolean circuit and $x \in \{0, 1\}^n$ is a string, then the output C(x) of C on x is defined by plugging in x in the source nodes and applying the operators of the gates, and taking for C(x) the resulting value in $\{0, 1\}$ of the sink gate.

Definition 2 (Circuit families). Let $t : \mathbb{N} \to \mathbb{N}$ be a function. A t(n)-size circuit family is a sequence $\{C_n\}_{n \in \mathbb{N}}$ of Boolean circuits, where each C_n has n inputs and a single output, and $|C_n| \leq t(n)$ for each $n \in \mathbb{N}$.

Definition 3 (SIZE(t(n))). Let $t : \mathbb{N} \to \mathbb{N}$ be a function. A language $L \subseteq \{0, 1\}^*$ is in SIZE(t(n)) if there exists a constant $c \in \mathbb{N}$ and a $(c \cdot t(n))$ -size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that for each $x \in \{0, 1\}^*$:

 $x \in L$ if and only if $C_n(x) = 1$, where n = |x|.

Definition 4 (TIME(t(n))/a(n)). Let $t, a : \mathbb{N} \to \mathbb{N}$ be functions. The class DTIME(t(n))/a(n) of languages decidable by O(t(n))-time Turing machines with a(n) bits of advice contains every language $L \subseteq \{0,1\}^*$ such that there exists a sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ with $\alpha_n \in \{0,1\}^{a(n)}$ for each $n \in \mathbb{N}$ and an O(t(n))-time deterministic Turing machine \mathbb{M} such that for for each $x \in \{0,1\}^*$:

 $x \in L$ if and only if $\mathbb{M}(x, \alpha_n) = 1$, where n = |x|.