
Computational Complexity

Handout – Lecture 7

Definition 1 (NP). A language L ⊆ Σ∗ is in the complexity class NP if there is a polynomial q : N→ N
and a polynomial-time Turing machine M such that for every x ∈ Σ∗:

x ∈ L if and only if there exists some u ∈ {0, 1}q(|x|) such that M(x, u) = 1.

Definition 2 (coNP). A language L ⊆ Σ∗ is in the complexity class coNP if there is a polynomial q :
N→ N and a polynomial-time Turing machine M such that for every x ∈ Σ∗:

x ∈ L if and only if for all u ∈ {0, 1}q(|x|) it holds that M(x, u) = 1.

Definition 3 (Σp
2). A language L ⊆ Σ∗ is in the complexity class Σp

2 if there is a polynomial q : N→ N
and a polynomial-time Turing machine M such that for every x ∈ Σ∗:

x ∈ L if and only if there exists u1 ∈ {0, 1}q(|x|) such that
for all u2 ∈ {0, 1}q(|x|) it holds that M(x, u1, u2) = 1.

Definition 4 (Σp
i). Let i ≥ 1. A language L ⊆ Σ∗ is in the complexity class Σp

i if there is a polynomial q :
N→ N and a polynomial-time Turing machine M such that for every x ∈ Σ∗:

x ∈ L if and only if there exists u1 ∈ {0, 1}q(|x|) such that
for all u2 ∈ {0, 1}q(|x|)
...
for all ui ∈ {0, 1}q(|x|)
it holds that M(x, u1, . . . , ui) = 1. if i is even,

x ∈ L if and only if there exists u1 ∈ {0, 1}q(|x|) such that
for all u2 ∈ {0, 1}q(|x|)
...
there exists ui ∈ {0, 1}q(|x|)
such that M(x, u1, . . . , ui) = 1. if i is odd.

Definition 5 (Πp
i). Let i ≥ 1. The complexity class Πp

i contains all languages that are the complement
of a language in Σp

i :
Πp

i = { L | L ∈ Σp
i }.

1

Definition 6. Alternating Turing machines are variants of (deterministic) Turing machines, where a few
elements are modified.

• Instead of one halting state qhalt, there are two halting states qacc (the accept state) and qrej (the
reject state).

• Instead of a single transition function δ, there are two transition functions δ1, δ2.

• The set Q \ {qacc, qrej} is partitioned into Q∃ and Q∀.

• Executions of alternating TMs are defined using a labeling procedure on the configuration graph—see
Section 4.1.1. in the book [1]. Repeatedly apply the following rules until they cannot be applied
anymore.

– Label each configuration with qacc with “accept.”

– If a configuration c with q ∈ Q∃ has an edge to a configuration c′ that is labeled with “accept,”
then label c with “accept.”

– If a configuration c has a state q ∈ Q∀ and both configurations c′, c′′ that are reachable from it
in the graph are labeled with “accept,” then label c with “accept.”

We say that the TM accepts the input if at the end of this process the starting configuration is
labeled with “accept.”

• Let T : N→ N. The TM runs in time T (n) if for every input x and for every possible sequence of
transition function choices, the machine halts after at most T (|x|) steps.

Definition 7 (ATIME). We define ATIME(T (n)) to be the set of languages that are accepted by an
alternating Turing machine that runs in time O(T (n)).

Definition 8 (ΣiTIME). Let i ≥ 1. We define ΣiTIME(T (n)) to be the set of languages that are
accepted by an alternating Turing machine that runs in time O(T (n)), whose initial state is in Q∃,
and that on every input and on every path in the configuration graph alternates at most i − 1 times
between Q∃ and Q∀.

Definition 9 (ΠiTIME). Let i ≥ 1. We define ΣiTIME(T (n)) to be the set of languages that are
accepted by an alternating Turing machine that runs in time O(T (n)), whose initial state is in Q∀,
and that on every input and on every path in the configuration graph alternates at most i − 1 times
between Q∃ and Q∀.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge
University Press, 2009.

2

