Computational Complexity

Handout – Lecture 7

Definition 1 (NP). A language $L \subseteq \Sigma^*$ is in the complexity class NP if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \Sigma^*$:

 $x \in L$ if and only if there exists some $u \in \{0, 1\}^{q(|x|)}$ such that $\mathbb{M}(x, u) = 1$.

Definition 2 (coNP). A language $L \subseteq \Sigma^*$ is in the complexity class coNP if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \Sigma^*$:

 $x \in L$ if and only if for all $u \in \{0, 1\}^{q(|x|)}$ it holds that $\mathbb{M}(x, u) = 1$.

Definition 3 (Σ_2^p) . A language $L \subseteq \Sigma^*$ is in the complexity class Σ_2^p if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \Sigma^*$:

 $x \in L$ if and only if there exists $u_1 \in \{0, 1\}^{q(|x|)}$ such that for all $u_2 \in \{0, 1\}^{q(|x|)}$ it holds that $\mathbb{M}(x, u_1, u_2) = 1$.

Definition 4 (Σ_i^p) . Let $i \ge 1$. A language $L \subseteq \Sigma^*$ is in the complexity class Σ_i^p if there is a polynomial $q : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} such that for every $x \in \Sigma^*$:

$x \in L$	if and only if	there exists $u_1 \in \{0, 1\}^{q(x)}$ such that for all $u_2 \in \{0, 1\}^{q(x)}$	
		:	
		for all $u_i \in \{0, 1\}^{q(x)}$	
		it holds that $\mathbb{M}(x, u_1, \dots, u_i) = 1$.	if i is even,
$x \in L$	if and only if	there exists $u_1 \in \{0,1\}^{q(x)}$ such that for all $u_2 \in \{0,1\}^{q(x)}$	
		÷	
		there exists $u_i \in \{0, 1\}^{q(x)}$	
		such that $\mathbb{M}(x, u_1, \ldots, u_i) = 1$.	if i is odd.

Definition 5 ($\Pi_i^{\rm p}$). Let $i \ge 1$. The complexity class $\Pi_i^{\rm p}$ contains all languages that are the complement of a language in $\Sigma_i^{\rm p}$:

$$\Pi_i^{\mathbf{p}} = \{ \overline{L} \mid L \in \Sigma_i^{\mathbf{p}} \}.$$

Definition 6. Alternating Turing machines are variants of (deterministic) Turing machines, where a few elements are modified.

- Instead of one halting state q_{halt} , there are two halting states q_{acc} (the *accept state*) and q_{rej} (the *reject state*).
- Instead of a single transition function δ , there are two transition functions δ_1, δ_2 .
- The set $Q \setminus \{q_{\text{acc}}, q_{\text{rej}}\}$ is partitioned into Q_{\exists} and Q_{\forall} .
- Executions of alternating TMs are defined using a labeling procedure on the configuration graph—see Section 4.1.1. in the book [1]. Repeatedly apply the following rules until they cannot be applied anymore.
 - Label each configuration with $q_{\rm acc}$ with "accept."
 - If a configuration c with $q \in Q_{\exists}$ has an edge to a configuration c' that is labeled with "accept," then label c with "accept."
 - If a configuration c has a state $q \in Q_{\forall}$ and both configurations c', c'' that are reachable from it in the graph are labeled with "accept," then label c with "accept."

We say that the TM accepts the input if at the end of this process the starting configuration is labeled with "accept."

• Let $T : \mathbb{N} \to \mathbb{N}$. The TM runs in time T(n) if for every input x and for every possible sequence of transition function choices, the machine halts after at most T(|x|) steps.

Definition 7 (ATIME). We define $\operatorname{ATIME}(T(n))$ to be the set of languages that are accepted by an alternating Turing machine that runs in time O(T(n)).

Definition 8 (Σ_i TIME). Let $i \geq 1$. We define Σ_i TIME(T(n)) to be the set of languages that are accepted by an alternating Turing machine that runs in time O(T(n)), whose initial state is in Q_{\exists} , and that on every input and on every path in the configuration graph alternates at most i - 1 times between Q_{\exists} and Q_{\forall} .

Definition 9 (Π_i TIME). Let $i \geq 1$. We define Σ_i TIME(T(n)) to be the set of languages that are accepted by an alternating Turing machine that runs in time O(T(n)), whose initial state is in Q_{\forall} , and that on every input and on every path in the configuration graph alternates at most i - 1 times between Q_{\exists} and Q_{\forall} .

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge University Press, 2009.