Computational Complexity

Handout – Lecture 6

Definition 1. Let $s : \mathbb{N} \to \mathbb{N}$ be a function and let $L \subseteq \{0,1\}^*$ be a language. We say that $L \in SPACE(s(n))$ if there exists a constant c and a TM \mathbb{M} that for every $x \in \{0,1\}^*$, the machine \mathbb{M} decides whether $x \in L$ and its tape heads visit at most $c \cdot s(n)$ locations of \mathbb{M} 's work tapes (so all tapes except the input tape).

Similarly, we say that $L \in \text{NSPACE}(s(n))$ if there exists a constant c and a nondeterministic TM M that for every $x \in \{0,1\}^*$, the machine M decides whether $x \in L$ and its tape heads visit at most $c \cdot s(n)$ locations of M's work tapes—regardless of the nondeterministic choices that it makes.

Definition 2. A quantified Boolean formula (QBF) is of the form $Q_1x_1Q_2x_2\cdots Q_mx_m \varphi(x_1,\ldots,x_m)$, where each Q_i is one of the two quantifiers \exists or \forall , the variables x_1,\ldots,x_m range over $\{0,1\}$ and φ is a propositional formula (without quantifiers).¹

Truth of QBFs is defined recursively. For the base case: a QBF without quantifiers—which is a propositional formula φ where all variables are replaced by (constants representing) truth values—is true if the propositional formula φ is true. For the inductive case: a QBF of the form $\exists x_i \ \psi$ is true if there exists a truth value $b_i \in \{0, 1\}$ such that $\psi[x_i \mapsto b_i]$ is true, and a QBF of the form $\forall x_i \ \psi$ is true if for both truth values $b_i \in \{0, 1\}$ it holds that $\psi[x_i \mapsto b_i]$ is true.

Definition 3. A function $f: \{0,1\}^* \to \{0,1\}^*$ is implicitly logspace computable if:

- f is polynomially bounded, i.e., there exists some c such that $|f(x)| \leq |x|^c$ for every $x \in \{0,1\}^*$,
- and the languages $L_f = \{ (x, i) \mid f(x)_i = 1 \}$ and $L'_f = \{ (x, i) \mid i \leq |f(x)| \}$ are in the complexity class L.

A language B is logspace-reducible to a language C if there is a function $f : \{0,1\}^* \to \{0,1\}^*$ that is implicitly logspace computable and for each $x \in \{0,1\}^*$ it holds that $x \in B$ if and only if $f(x) \in C$.

¹Technically, this only defines QBFs in *prenex form*, where all quantifiers appear on the left of the formula. One can also consider QBFs where quantifiers and Boolean connectives can alternate.