Definition 1. An oracle Turing machine is a TM M that has a special (read-write) tape that we call M's oracle tape and three special states $q_{\text{query}}, q_{\text{yes}}, q_{\text{no}} \in Q$. To execute M, we specify in addition to the input a language $O \subseteq \{0, 1\}^*$ that is used as the oracle for M. Whenever during the execution, M enters the state q_{query}—instead of using the transition function to determine the next configuration—for the next configuration the machine moves into the state q_{yes} if $q \in O$ and into the state q_{no} if $q \notin O$, where q denotes the contents of the special oracle tape, and the tape contents and the positions of the tape heads do not change.

Thus, regardless of the choice of O, a membership query to O only counts as a single computation step.

If M is an oracle machine, $O \subseteq \{0, 1\}^*$ is a language, and $x \in \{0, 1\}^*$ is an input, then we denote the output of M on input x and with oracle O by: $M^O(x)$.

Definition 2. Let $O \subseteq \{0, 1\}^*$ be a language.

We let P^O be the set of all languages that can be decided by a polynomial-time deterministic Turing machine with oracle access to O.

We let NP^O be the set of all languages that can be decided by a polynomial-time nondeterministic Turing machine with oracle access to O.

We will use similar notation for variants of other complexity classes that are based on Turing machines with bounds on the running time, e.g., EXP^O.