Computational Complexity

Handout – Lecture 3

Definition 1. The decision problem TM-SAT is defined as follows:

 $TM-SAT = \{ (\alpha, x, 1^n, 1^t) \mid \text{ there exists } u \in \{0, 1\}^n \text{ such that} \\ \mathbb{M}_{\alpha} \text{ outputs } 1 \text{ on input } (x, u) \text{ within } t \text{ steps } \}$

Or, described in a different format:

Input: A binary string α , a binary string x, a unary string 1^n , and a unary string 1^t .

Question: Does there exist a binary string $u \in \{0,1\}^n$ such that \mathbb{M}_{α} outputs 1 on input (x, u) within t steps?

Definition 2. The problem FORMULA-SAT is defined as follows:

Input: A propositional logic formula φ .

Question: Is φ satisfiable?

Definition 3. A propositional logic formula φ is in *conjunctive normal form* (*CNF*) if it is of the form $c_1 \wedge \cdots \wedge c_m$, where each c_j is a disjunction of literals (propositional variables or their negation). The conjuncts c_1, \ldots, c_m are called *clauses* of φ .

Let $k \ge 2$. Then k-CNF denotes the set of all propositional formulas in CNF whose clauses contain (at most) k literals.

Definition 4. The problem k-SAT (or kSAT) is defined as follows:

Input: A propositional logic formula φ in k-CNF.

Question: Is φ satisfiable?