Definition 1 (DTIME). Let $T : \mathbb{N} \rightarrow \mathbb{N}$ be a function. A language $L \subseteq \Sigma^*$ is in $\text{DTIME}(T(n))$ if there exists a Turing machine that decides L and that runs in time $O(T(n))$.

Definition 2 (The complexity class P).

$$
P = \bigcup_{c \geq 1} \text{DTIME}(n^c)
$$

Definition 3 (The complexity class EXP).

$$
\text{EXP} = \bigcup_{c \geq 1} \text{DTIME}(2^{n^c})
$$

Definition 4 (The complexity class NP). A language $L \subseteq \Sigma^*$ is in the complexity class NP if there is a polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial-time Turing machine M (the verifier) such that for every $x \in \Sigma^*$:

$$
x \in L \quad \text{if and only if} \quad \text{there exists some } u \in \{0, 1\}^{p(|x|)} \text{ such that } M(x, u) = 1.
$$

The string $u \in \{0, 1\}^{p(|x|)}$ is called a certificate for x if $M(x, u) = 1$.

Definition 5. Nondeterministic Turing machines are variants of (deterministic) Turing machines, where a few elements are modified.

- Instead of one halting state q_{halt}, there are two halting states q_{acc} (the accept state) and q_{rej} (the reject state).
- Instead of a single transition function δ, there are two transition functions δ_1, δ_2.
- At each step, one of δ_1, δ_2 is chosen nondeterministically to determine the next configuration.
- We write $M(x) = 1$ if there is some sequence of nondeterministic choices such that M reaches the state q_{acc} on input x.
- The machine M runs in time $T(n)$ if for every input x and every sequence of nondeterministic choices, M halts within $T(|x|)$ steps.

Definition 6 (NTIME). Let $T : \mathbb{N} \rightarrow \mathbb{N}$ be a function. A language $L \subseteq \Sigma^*$ is in NTIME($T(n)$) if there exists a nondeterministic Turing machine that decides L and that runs in time $O(T(n))$.

Definition 7 (The complexity class coNP). A language $L \subseteq \Sigma^*$ is in coNP if $\overline{L} \in \text{NP}$, where $\overline{L} = \{ x \in \Sigma^* \mid x \not\in L \}$.

Definition 8 (Polynomial-time reductions). A language $L_1 \subseteq \Sigma^*$ is polynomial-time reducible to a language $L_2 \subseteq \Sigma^*$ if there is a polynomial-time computable function $f : \Sigma^* \rightarrow \Sigma^*$ (the reduction) such that for every $x \in \Sigma^*$ it holds that:

$$
x \in L_1 \quad \text{if and only if} \quad f(x) \in L_2.
$$
Definition 9 (NP-hardness and NP-completeness). A language $L \subseteq \Sigma^*$ is **NP-hard** if every language $L' \in \text{NP}$ is polynomial-time reducible to L.

A language $L \subseteq \Sigma^*$ is **NP-complete** if $L \in \text{NP}$ and L is NP-hard.