Computational Complexity

Handout – Lecture 2

Definition 1 (DTIME). Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A language $L \subseteq \Sigma^*$ is in DTIME(T(n)) if there exists a Turing machine that decides L and that runs in time O(T(n)).

Definition 2 (The complexity class P).

$$\mathbf{P} = \bigcup_{c \ge 1} \mathrm{DTIME}(n^c)$$

Definition 3 (The complexity class EXP).

$$\mathrm{EXP} = \bigcup_{c \ge 1} \mathrm{DTIME}(2^{n^c})$$

Definition 4 (The complexity class NP). A language $L \subseteq \Sigma^*$ is in the complexity class NP if there is a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial-time Turing machine \mathbb{M} (the *verifier*) such that for every $x \in \Sigma^*$:

 $x \in L$ if and only if there exists some $u \in \{0, 1\}^{p(|x|)}$ such that $\mathbb{M}(x, u) = 1$.

The string $u \in \{0, 1\}^{p(|x|)}$ is called a *certificate* for x if $\mathbb{M}(x, u) = 1$.

Definition 5. Nondeterministic Turing machines are variants of (deterministic) Turing machines, where a few elements are modified.

- Instead of one halting state q_{halt} , there are two halting states q_{acc} (the *accept state*) and q_{rej} (the *reject state*).
- Instead of a single transition function δ , there are two transition functions δ_1, δ_2 .
- At each step, one of δ_1, δ_2 is chosen nondeterministically to determine the next configuration.
- We write $\mathbb{M}(x) = 1$ if there is some sequence of nondeterministic choices such that \mathbb{M} reaches the state q_{acc} on input x.
- The machine \mathbb{M} runs in time T(n) if for every input x and every sequence of nondeterministic choices, \mathbb{M} halts within T(|x|) steps.

Definition 6 (NTIME). Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A language $L \subseteq \Sigma^*$ is in NTIME(T(n)) if there exists a nondeterministic Turing machine that decides L and that runs in time O(T(n)).

Definition 7 (The complexity class coNP). A language $L \subseteq \Sigma^*$ is in coNP if $\overline{L} \in NP$, where $\overline{L} = \{ x \in \Sigma^* \mid x \notin L \}$.

Definition 8 (Polynomial-time reductions). A language $L_1 \subseteq \Sigma^*$ is polynomial-time reducible to a language $L_2 \subseteq \Sigma^*$ if there is a polynomial-time computable function $f : \Sigma^* \to \Sigma^*$ (the reduction) such that for every $x \in \Sigma^*$ it holds that:

$$x \in L_1$$
 if and only if $f(x) \in L_2$.

Definition 9 (NP-hardness and NP-completeness). A language $L \subseteq \Sigma^*$ is *NP-hard* if every language $L' \in$ NP is polynomial-time reducible to L.

A language $L \subseteq \Sigma^*$ is *NP-complete* if $L \in NP$ and *L* is NP-hard.