Computational Complexity

Handout – Lecture 10

Definition 1 $(val(\varphi))$. Let φ be a propositional formula in CNF. Then $val(\varphi)$ is the maximum ratio of clauses of φ that can be satisfied simultaneously by any truth assignment.

Thus, if φ is satisfiable, then $\operatorname{val}(\varphi) = 1$, and if φ is not satisfiable, then $\operatorname{val}(\varphi) < 1$.

Definition 2 (PCP verifier). Let $L \subseteq \{0,1\}^*$ be a language and let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. We say that L has an (r(n), q(n))-PCP verifier if there is a polynomial-time probabilistic algorithm V that satisfies:

- (Efficiency) When given as input a string $x \in \{0, 1\}^n$ and when given random access to a string $\pi \in \{0, 1\}^*$ of length at most $q(n)2^{r(n)}$ (which we call the *proof*), V uses at most r(n) random coin flips and makes at most q(n) nonadaptive queries to locations of π .
 - Random access: V can query an oracle that gives the *i*-th bit of π .
 - Nonadaptive queries: the queries do not depend on the answers for previous queries.
- V always outputs either 0 or 1.
- (Completeness) If $x \in L$, then there exists a proof $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$ such that $\Pr[V^{\pi}(x) = 1] = 1$. This string is called the *correct proof* for x.
- (Soundness) If $x \notin L$, then for every proof $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$, it holds that $\Pr[V^{\pi}(x) = 1] \leq 1/2$.

Definition 3 (PCP(r(n), q(n))). Let $q, r : \mathbb{N} \to \mathbb{N}$ be functions. The class PCP(r(n), q(n)) consists of all languages $L \subseteq \{0, 1\}^*$ for which there exist constants c, d > 0 such that L has a $(c \cdot r(n), d \cdot q(n))$ -PCP verifier.