Computational Complexity

Exercise Session 6

Exercise 1. Clique is the problem of deciding, given a graph $G=(V, E)$ and a natural number $k \in \mathbb{N}$, whether there exists a set $C \subseteq V$ such that $|C|=k$ and for all $c_{1}, c_{2} \in C$ with $c_{1} \neq c_{2}$ it holds that $\left\{c_{1}, c_{2}\right\} \in E$.

For every $\rho<1$, an algorithm A is called a ρ-approximation algorithm for MAX-CliQue if for every graph $G=(V, E), A(G)$ outputs a clique $C \subseteq V$ of G of size at least $\rho \cdot \mu_{G}$, where μ_{G} is the maximum size of any clique of G.

Show that for every $\rho<1$, there is no polynomial-time ρ-approximation algorithm for MAX-CliQue, unless $P=N P$.

Exercise 2. Consider the following problem:

$$
\text { SqRoot-Clique }=\{G:\langle G, \sqrt{m}\rangle \in \text { Clique, } G \text { has } m \text { vertices }\}
$$

Show that SqRoot-Clique is solvable in time $2^{o(m)}$.

