Computational Complexity

Exercise Session 4

Exercise 1. Prove that $L \subseteq P$.

Definition 1. We define DP to be the following complexity class:

 $\mathrm{DP} = \{ \ A \cap B \ | \ A \in \mathrm{NP}, B \in \mathrm{coNP} \ \}.$

Exercise 2.

- (a) Explain the difference between DP and the class $NP \cap coNP$.
- (c) Prove that $NP \cup coNP \subseteq DP$.
- (d) Prove that P = DP if and only if P = NP.