Exercise 1. Prove that $L \subseteq P$.

Definition 1. We define DP to be the following complexity class:

$$\text{DP} = \{ A \cap B \mid A \in \text{NP}, B \in \text{coNP} \}.$$

Exercise 2.

(a) Explain the difference between DP and the class $\text{NP} \cap \text{coNP}$.

(c) Prove that $\text{NP} \cup \text{coNP} \subseteq \text{DP}$.

(d) Prove that $P = \text{DP}$ if and only if $P = \text{NP}$.