Computational Complexity

Exercise Session 3

Exercise 1. Is there an oracle such that, relative to this oracle, ...? If so, then give such an oracle and prove that it works. If not, prove why not.

- (a) $DTIME(n^2) = DTIME(n^3)$
- (b) $DTIME(n^2) \neq DTIME(n^3)$
- (c) P = coNP
- (d) $P \neq coNP$

Exercise 2. Show that if $NTIME(n) \subseteq DTIME(n)$, then P = NP.

- NTIME(n) can be characterized as the set of all decision problems that can be verified in linear time with a linear-size certificate. That is, $A \in \text{NTIME}(n)$ if and only if there is a linear-time Turing machine \mathbb{M} and a constant c such that for all $x \in \{0,1\}^*$ it holds that $x \in A$ if and only if there exists some $u \in \{0,1\}^{c \cdot |x|}$ such that $\mathbb{M}(x,u) = 1$.
- *Hint:* Use a padding argument.

Definition 1. Let $A \subseteq \{0,1\}^*$ be a language. When a Turing machine \mathbb{M} has access to an A-oracle, we write \mathbb{M}^A . We say that A is *auto-reducible* if there is a polynomial-time Turing machine \mathbb{M}^A with oracle access to A such that for all $x \in \{0,1\}^*$:

$$x \in A$$
 if and only if $\mathbb{M}^A(x) = 1$,

with the special requirement that on input x the Turing machine \mathbb{M}^A is not allowed to query the oracle A for x.

Exercise 3. Prove that 3SAT is auto-reducible.