Computational Complexity

Exercise Session 2

Exercise 1. Show that $NP \subseteq EXP$.

Exercise 2. Consider the following problem REVERSE-3SAT:

Instance: A propositional formula φ in 3CNF—that is, a formula of the form $\varphi = c_1 \wedge \cdots \wedge c_m$, where each c_i is of the form $c_i = l_{i,1} \vee l_{i,2} \vee l_{i,3}$, where $l_{i,1}, l_{i,2}, l_{i,3}$ are propositional literals.

Question: Is there a truth assignment α to the variables occurring in φ that sets at least one literal in each clause c_i to **false**?

Prove that REVERSE-3SAT is NP-complete—that is, prove that is in NP and that it is NP-hard. To show NP-hardness, you may give a reduction from any known NP-complete problem.

• *Hint:* reduce from 3SAT.

Exercise 3. Consider the following problem 3-COLORING:

Instance: An undirected graph G = (V, E).

Question: Is there a mapping $\chi : V \to \{1, 2, 3\}$ such that for each $\{v_1, v_2\} \in E$ it holds that $\chi(v_1) \neq \chi(v_2)$?

In this exercise, we will show that 3-COLORING is NP-complete.

(i) Prove that 3-COLORING is in NP.

To show that 3-COLORING is NP-hard, we will give a polynomial-time reduction f from 3SAT to 3-COLORING. We describe this reduction f as follows: for an arbitrary instance φ of 3SAT, we describe what the instance $f(\varphi) = G$ looks like.

Let $\varphi = c_1 \wedge \cdots \wedge c_m$ be an arbitrary 3CNF formula, containing propositional variables x_1, \ldots, x_n . The graph $f(\varphi)$ consists of:

- vertices a, b, c,
- edges $\{a, b\}, \{a, c\}, \{b, c\}, \{b,$
- vertices $x_i, \overline{x_i}$ for each $1 \le i \le n$,
- edges $\{c, x_i\}, \{c, \overline{x_i}\}, \{x_i, \overline{x_i}\},$ for each $1 \le i \le n$,
- vertices d_j, e_j, f_j, g_j, h_j , for each $1 \le j \le m$,
- edges $\{\ell_{j,1}, d_j\}, \{\ell_{j,2}, e_j\}, \{\ell_{j,3}, f_j\}$, for each clause $c_j = (\ell_{j,1} \lor \ell_{j,2} \lor \ell_{j,3})$ of φ , where $\ell_{j,1}, \ell_{j,2}, \ell_{j,3} \in \{x_i, \overline{x_i} \mid 1 \le i \le n\}$, and
- edges $\{d_j, g_j\}, \{e_j, g_j\}, \{d_j, e_j\}, \{g_j, h_j\}, \{f_j, h_j\}, \{f_j, a\}, \{h_j, a\}, \text{ for each } 1 \le j \le m.$

Let $\varphi_{\text{ex}} = (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_2 \lor x_3 \lor x_4)$ be an example 3CNF formula.

- (ii) Draw the graph $f(\varphi_{\text{ex}})$.
- (iii) Show that φ_{ex} is satisfiable. Use a satisfying assignment for φ_{ex} to produce a 3-coloring for $f(\varphi_{\text{ex}})$.
- (iv) Prove, for an arbitrary 3CNF formula φ , that φ is satisfiable if and only if $f(\varphi)$ is 3-colorable.
- (v) Explain why the function f is polynomial-time computable.