Computational Complexity

Lecture 1

February 5, 2019 Universiteit van Amsterdam

Practical Information

- Ronald de Haan (R.deHaan@uva.nl)
- Jan Czajkowski (J.Czajkowski@uva.nl)
- Course web page: https://staff.science.uva.nl/r.dehaan/complexity2019/
- Book: Computational Complexity: A Modern Approach, by Sanjeev Arora & Boaz Barak, 2009. (http://www.cs.princeton.edu/theory/complexity/)

Practical Information

Lectures:

- Tuesday 15:00-17:00 (SP G0.18B)
- Thursday 11:00-13:00 (SP G0.18B)
- (There are a few exceptions! See the web page.)
- Lectures will be mostly on the white board
 - For everything we do, there is accompanying explanation/proofs in the book (or in another text)

Exercise session:

Friday 13:00-15:00 (SP A1.04)

Practical Information

Weekly homeworks

- ► To be handed in Wednesday at 17:00
- Preferably by email to Jan Czajkowski
- Total of 6 homework sets
- When computing the average grade for the exercises, the lowest score will be dropped

► Final exam

- Open book: you can bring the book and any notes
- No electronic equipment allowed

► Final grade: 50% homeworks, 50% final exam

What is Computational Complexity?

► The study of what you can compute with limited resources

- Resources, e.g.: time, memory space, random bits
- Computability theory tells us what can be computed in principle
 Computational complexity theory tells us what can be computed realistically

Central notions:

The resource use of an algorithm, in the worst case
 Computational problems, and algorithms solving these problems
 How does the resource use of algorithms scale?
 ...

What is Computational Complexity?

 Distinguish different degrees of computational difficulty: different complexity classes

(a whole zoo of complexity classes: https://complexityzoo.uwaterloo.ca/Complexity_Zoo)

 Central question: the P versus NP problem (one of the \$1 Million Millennium Prize Problems)

Relation to Other Fields

Computation plays a role nearly everywhere..

- Therefore, computational complexity is relevant for many areas; for example:
 - Computer science
 - Cryptography
 - Economics, game theory
 - Artificial intelligence
 - Biology
 - Scheduling, vehicle routing
 - ▶ ...

Some courses that are related

- ► Recursion Theory
- Kolmogorov Complexity
- Knowledge Representation
- Quantum Computing

Schedule of the Course

- 1. Turing machines, foundations
- 2. P, NP, coNP, reductions
- 3. NP-completeness, Cook-Levin Theorem
- 4. Diagonalization, time hierarchy theorems, Ladner's Theorem
- 5. Relativization, Baker-Gill-Solovay Theorem
- 6. Space complexity, PSPACE, L, NL
- 7. Polynomial Hierarchy
- 8. Circuit complexity, Karp-Lipton Theorem
- 9. Probabilistic algorithms, BPP
- 10. Approximation, PCP Theorem
- 11. Subexponential-time complexity, Exponential Time Hypothesis (ETH)
- 12. *(t.b.a.)*
- 13. *(t.b.a.)*

Illustration: Graph k-Coloring

- You are given an undirect graph
 - ▶ Nodes / vertices, with edges between them.
- ► The task is to color each node with a color in {1, 2, ..., k} so that no two connected nodes have the same color
- This can be used to model many applications
 - For example, nodes are regions with their own radio station, colors are radio frequencies, and two nodes are connected if the regions border each other
 - The task is to assign radio frequencies without conflict (in the border areas)

Color this graph with 2 colors!

Color this graph with 2 colors!

Now, color this graph with 3 colors!

(We'll continue on the white board..)

Quadratic vs. Exponential

- Important difference between algorithms that run in time, say, n² vs. algorithms that run in time, say, 2ⁿ
- ▶ Illustration (time needed for 10¹⁰ steps per second):

п	n ² steps	2 ⁿ steps
2	0.00000002 msec	0.00000002 msec
5	0.00000015 msec	0.00000019 msec
10	0.00001 msec	0.0001 msec
20	0.00004 msec	0.10 msec
50	0.00025 msec	31.3 hours
100	0.001 msec	$9.4 imes10^{11}$ years
1000	0.100 msec	$7.9 imes10^{282}$ years

• # of atoms in universe $\approx 10^{80}$