Exercise 1 (5pt). The problem MAX2SAT consists of all tuples \(\langle \varphi, k \rangle \) where \(\varphi \) is a 2CNF formula and \(k \in \mathbb{N} \) such that there exists a truth assignment \(\alpha : \text{var}(\varphi) \to \{0,1\} \) such that \(\alpha \) satisfies at least \(k \) clauses of \(\varphi \). (Note: here we define a 2CNF formula as a CNF formula where each clause contains at most 2 literals. Note also: \(\varphi \) might contain several copies of the same clause.)

For every \(\rho < 1 \), an algorithm \(A \) is called a \(\rho \)-approximation algorithm for MAX2SAT if for every 2CNF formula \(\psi \) with \(m \) clauses, \(A(\psi) \) outputs a truth assignment satisfying at least \(\rho \cdot \mu_\psi \) of \(\psi \)'s clauses, where \(\mu_\psi \) is the maximum number of clauses of \(\psi \) satisfied by any truth assignment.

Consider the following polynomial-time reduction \(f \) from 3SAT to MAX2SAT:

Let \(\varphi = c_1 \land \ldots \land c_m \) be a 3CNF formula with clauses \(c_1, \ldots, c_m \) and containing the propositional variables \(p_1, \ldots, p_u \). Then \(f(\varphi) = (\psi, k) \) is defined as follows.

- The formula \(\psi \) will contain the propositional variables \(p_1, \ldots, p_u \), as well as the new variables \(q_1, \ldots, q_u \).
- For each clause \(c_j = l_{j,1} \lor l_{j,2} \lor l_{j,3} \) of \(\varphi \), we add the following 10 clauses to \(\psi \):
 - \((l_{j,1}), (l_{j,2}), (l_{j,3}), (q_j)\),
 - \((-l_{j,1} \lor -l_{j,2}), (-l_{j,1} \lor -l_{j,3}), (-l_{j,2} \lor -l_{j,3})\),
 - \((l_{j,1} \lor -q_j), (l_{j,2} \lor -q_j), (l_{j,3} \lor -q_j)\).

That is \(\psi \) consists of the conjunction of the 10\(m \) resulting clauses.

- We let \(k = 7m \).

(a) Show that this reduction is correct—i.e., that \(\varphi \in 3\text{SAT} \) if and only if \(\langle \psi, k \rangle \in \text{MAX2SAT} \).

(b) Show that if there is a polynomial-time \(\rho \)-approximation algorithm for MAX2SAT for each \(\rho < 1 \), then \(P = NP \).

 - Hint: use the PCP Theorem and the function \(f \) described above.

(c) Give a polynomial-time \(\frac{1}{2} \)-approximation algorithm for MAX2SAT.

Exercise 2 (4pt). Consider the following polynomial-time reduction \(f \) from 3SAT to 3SAT. Let \(\varphi \) be a 3CNF formula with clauses \(c_1, \ldots, c_m \) and containing the propositional variables \(p_1, \ldots, p_n \). Then \(f(\varphi) \) is defined as the following 3CNF formula:

\[
f(\varphi) = \varphi \land \left(\bigwedge_{j=1}^{m} q_j \right) \land \left(\bigwedge_{j=1}^{m} \bigwedge_{j'=1}^{m} (q_j \lor q_{j'}) \right),
\]

where each of the variables \(q_j \) is a fresh variable that does not occur in \(\varphi \). (Note: here we define a 3CNF formula as a CNF formula where each clause contains at most 3 literals.)

Let \(F \) be the following set of 3CNF formulas:

\[
F = \{ f(\varphi) \mid \varphi \text{ is a 3CNF formula } \},
\]

and let \(\text{FUNNY-3SAT} \) be the following decision problem:

\[
\text{FUNNY-3SAT} = F \cap 3\text{SAT}.
\]
(a) Show that FUNNY-3SAT is solvable in time \(2^{O(\sqrt{|x|})}\), where \(|x|\) denotes the input size.

(b) Show that FUNNY-3SAT is not solvable in time \(2^{o(\sqrt{|x|})}\), where \(|x|\) denotes the input size, assuming that the ETH is true.

Exercise 3 (1pt). Give an example of a decision problem that is not solvable in polynomial time (assuming \(P \neq NP\)), yet that is solvable in time \(2^{o(|x|)}\), where \(|x|\) denotes the input size.