Computational Complexity

Homework Sheet 5

Hand in before March 13, 17:00 By email to J.Czajkowski@uva.nl

Exercise 1 (3pt). Define:

$$\mathbf{P}_{/\log} = \bigcup_{c,d \in \mathbb{N}} \mathrm{DTIME}(n^c) / (d \log n).$$

That is, $P_{/\log}$ is the class of all languages that can be decided in polynomial time with $O(\log n)$ bits of advice. Prove that SAT $\notin P_{/\log}$, unless P = NP.

- *Hint:* iterate over all possible advice strings of length $O(\log n)$.
- *Hint:* you may assume that for any string x that represents a propositional formula φ and any truth assignment α to (some of) the variables of φ , one can in polynomial-time encode the formula $\varphi[\alpha]$ as a string x' that is of the same length as x—where $\varphi[\alpha]$ is obtained from φ by instantiating each variable z in the domain of α by $\alpha(z)$.

Exercise 2 (2pt). Let $P_{/1}$ be the class of languages that can be decided in polynomial time with a single bit of advice (for each input size). That is $P_{/1} = \bigcup_{c \in \mathbb{N}} DTIME(n^c)/1$. Prove that $P \subsetneq P_{/1}$.

• *Hint:* use the following undecidable language UHALT:

UHALT = { $1^n \mid n$'s binary expansion encodes a pair $\langle M, x \rangle$ such that M is a Turing machine that halts on input x }.

Exercise 3 (2pt). Show that $RP \subseteq NP$.

Exercise 4 (3pt). Show that $ZPP = RP \cap coRP$.

• *Hint:* use Markov's inequality for showing that $ZPP \subseteq RP \cap coRP$. If X is a non-negative random variable and a > 0, then:

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}.$$