Computational Complexity

Homework Sheet 3

Hand in before February 27, 17:00 Preferably by email to J.Czajkowski@uva.nl

Exercise 1 (3pt). Is there an oracle such that, relative to this oracle, ...? If so, then give such an oracle and prove that it works. If not, prove why not.

- (a) P = EXP
- (b) $coNP \subseteq P$ and $NP \not\subseteq P$
- (c) $DTIME(n) = DTIME(n^2)$
- (d) $NP = coNP \neq EXP$

For example, in (a) you have to either (i) show that there exists an oracle A such that $P^A = EXP^A$ or (ii) show that such an oracle does not exist. In (b), you have to either (i) show that there exists an oracle A such that $coNP^A \subseteq P^A$ and $NP^A \not\subseteq P^A$ or (ii) show that such an oracle does not exist.

Exercise 2 (3pt). Prove that $NTIME(n) \neq P$.

- NTIME(n) can be characterized as the set of all decision problems that can be verified in linear time with a linear-size certificate. That is, $A \in \text{NTIME}(n)$ if and only if there is a linear-time Turing machine \mathbb{M} and a constant c such that for all $x \in \{0,1\}^*$ it holds that $x \in A$ if and only if there exists some $u \in \{0,1\}^{c \cdot |x|}$ such that $\mathbb{M}(x,u) = 1$. You are allowed to use this characterization of NTIME(n).
- Hint: Use the Nondeterministic Time Hierarchy Theorem.

Exercise 3 (4pt). In this exercise, we will construct a decision problem $A \subseteq \{0\}^*$ that is not autoreducible, using diagonalization. (For a definition of auto-reducibility, see the previous homework sheet.)

- (a) Consider the function $b: \mathbb{N} \to \mathbb{N}$ such that b(0) = 1 and for each n > 0 it holds that $b(n) = 2^{b(n-1)}$. Show that there exists some i_0 such that for all $i \ge i_0$ it holds that $b(i) > b(i-1)^{i-1}$.
- (b) Let \mathbb{M} be a polynomial-time oracle Turing machine that—when given input $x \in \{0\}^*$ —does not query x to the oracle. Show that there exists some i such that $\mathbb{M} = \mathbb{M}_i$, and \mathbb{M}_i^O runs in time at most n^i for all oracles O.
 - Hint: Remember that we can choose our representation scheme $i \mapsto M_i$ in such a way that every Turing machine has infinitely many representations.
- (c) Suppose that \mathbb{M}_{i}^{O} —from (b)—is given the string $0^{b(i)}$ as input. What can you say about the size of the queries that \mathbb{M}_{i}^{O} makes to O?
- (d) Construct a set $A \subseteq \{0\}^*$ that is not auto-reducible. Construct A in stages A_i such that $A = \bigcup_{i \ge 1} A_i$. Recursively define $A_i \subseteq \{0\}^{b(i)}$ in such a way that A is not auto-reducible by construction. Make sure that you do not forget to prove that the set is not auto-reducible.
 - Hint: suppose you have constructed A_1, \ldots, A_{i-1} . Let $A_{\leq i-1} = \bigcup_{1 \leq j \leq i-1} A_j$. Consider the behavior of machine $\mathbb{M}_i^{A_{\leq i-1}}$ with oracle access to $A_{\leq i-1}$ when given input $0^{b(i)}$ —that does not query $0^{b(i)}$. Based on the output of $\mathbb{M}_i^{A_{\leq i-1}}$ on $0^{b(i)}$, choose whether $0^{b(i)}$ is in A_i or not.