Computational Complexity

Homework Sheet 2

Hand in before February 20, 17:00 Preferably by email to J.Czajkowski@uva.nl

Exercise 1 (2pt). Show that $coNP \subseteq EXP$.

Exercise 2 (4pt). Consider the following problem EXACTLY-2-IN-5-SAT:

Instance: A propositional formula φ in 5CNF—that is, a formula of the form $\varphi = c_1 \wedge \cdots \wedge c_m$, where each c_i is of the form $c_i = l_{i,1} \vee l_{i,2} \vee l_{i,3} \vee l_{i,4} \vee l_{i,5}$, where $l_{i,1}, l_{i,2}, l_{i,3}, l_{i,4}, l_{i,5}$ are propositional literals.

Question: Is there a truth assignment α to the variables occurring in φ that sets exactly 2 literals in each clause c_i to true?

Note: we allow clauses to contain complementary literals—e.g., $(x_1 \lor \neg x_1 \lor x_2 \lor x_3 \lor x_4)$ is a valid clause. Prove that EXACTLY-2-IN-5-SAT is NP-complete—that is, prove that is in NP and that it is NP-hard. To show NP-hardness, you may give a reduction from any known NP-complete problem.

• *Hint:* reduce from a suitable variant of 3SAT.¹

Exercise 3 (2pt). Let $A \subseteq \{0,1\}^*$ be an NP-complete language. Let p be a polynomial and let \mathbb{M}_A be a polynomial-time Turing machine such that, for all $x \in \{0,1\}^*$:

 $x \in A$ if and only if there exists some $u \in \{0,1\}^{p(|x|)}$ such that $\mathbb{M}_A(x,u) = 1$.

- (a) Define the set $B = \{ \langle x, z \rangle \mid \text{there exists } z' \in \{0, 1\}^* \text{ such that } |zz'| \leq p(|x|) \text{ and } \mathbb{M}_A(x, zz') = 1 \}.$ Prove that B is in NP.
- (b) Suppose that we have access to A as an oracle. Basically this means that we have a subroutine that, given a string y, tells in a single step whether $y \in A$. (See Definition 3.4 of Arora & Barak, 2009.) Construct a polynomial-time Turing machine $\mathbb{M}_{\text{search}}$ (with access to an A-oracle) that, given $x \in \{0,1\}^*$, if $x \in A$ outputs a string u such that $\mathbb{M}_A(x, u) = 1$ and if $x \notin A$ outputs 0. Use (a).
 - *Hint:* use the fact that A is NP-complete.

Exercise 4 (2pt). Let $A \subseteq \{0,1\}^*$ be a language. When a Turing machine \mathbb{M} has access to an A-oracle, we write \mathbb{M}^A . We say that A is *auto-reducible* if there is a polynomial-time Turing machine \mathbb{M}^A with oracle access to A such that for all $x \in \{0,1\}^*$:

$$x \in A$$
 if and only if $\mathbb{M}^A(x) = 1$,

with the special requirement that on input x the Turing machine \mathbb{M}^A is not allowed to query the oracle A for x.

Suppose that A is NP-complete. Prove that A is auto-reducible. Use **Exercise 3**.

¹See, e.g., https://en.wikipedia.org/wiki/Boolean_satisfiability_problem.