Computational Complexity

Exercise Session 4

Exercise 1. Prove that $L \subseteq P$.

Definition 1. We define DP to be the following complexity class:

 $DP = \{ A \cap B \mid A \in NP, B \in coNP \}.$

Definition 2. Let G = (V, E) be an undirected graph. A subset $C \subseteq V$ of vertices is called a *clique* of G if every $v_1, v_2 \in C$ with $v_1 \neq v_2$ are connected by an edge in E. The problem EXACT-CLIQUE is defined as follows:

EXACT-CLIQUE = { $\langle G, k \rangle \mid G$ is an undirected graph that has a clique of size k but has no clique of size k + 1 }.

Exercise 2.

- (a) Explain the difference between DP and the class NP \cap coNP.
- (b) Prove that $\text{EXACT-CLIQUE} \in \text{DP}$.
- (c) Prove that $NP \cup coNP \subseteq DP$.
- (d) Prove that P = DP if and only if P = NP.