Computational Complexity

Exercise Session 3

Exercise 1. Is there an oracle such that, relative to this oracle, ...? If so, then give such an oracle and prove that it works. If not, prove why not.

(a) $\text{DTIME}(n^2) = \text{DTIME}(n^3)$
(b) $\text{DTIME}(n^2) \neq \text{DTIME}(n^3)$
(c) $P = \text{coNP}$
(d) $P \neq \text{coNP}$

Exercise 2. Show that if $\text{NTIME}(n) \subseteq \text{DTIME}(n)$, then $P = \text{NP}$.

- $\text{NTIME}(n)$ can be characterized as the set of all decision problems that can be verified in linear time with a linear-size certificate. That is, $A \in \text{NTIME}(n)$ if and only if there is a linear-time Turing machine M and a constant c such that for all $x \in \{0,1\}^*$ it holds that $x \in A$ if and only if there exists some $u \in \{0,1\}^{c|x|}$ such that $M(x,u) = 1$.

- Hint: Use a padding argument.

Exercise 3. Does the proof of the Baker-Gill-Solovay Theorem (Theorem 3.7 in the book) also work with the following language U'_B instead of U_B?

$U'_B = \{ 1^n : \text{at least two strings of length } n \text{ are in } B \}$