Computational Complexity

Homework Sheet 5

Hand in before March 14, 23:59 Preferably by email to J.M.Czajkowski@cwi.nl

Exercise 1 (2pt). Show that $RP \subseteq NP$.

Exercise 2 (4pt). Show that $ZPP = RP \cap coRP$.

• *Hint*: use Markov's inequality for showing that $ZPP \subseteq RP \cap coRP$. If X is a non-negative random variable and a > 0, then:

 $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}$.

Exercise 3 (4pt). The problem MAX2SAT consists of all tuples $\langle \varphi, k \rangle$ where φ is a 2CNF formula and $k \in \mathbb{N}$ such that there exists a truth assignment $\alpha : \text{var}(\varphi) \to \{0,1\}$ such that α satisfies at least k clauses of φ . (Note: here we define a 2CNF formula as a CNF formula where each clause contains **at most** 2 literals. Note also: φ might contain several copies of the same clause.)

For every $\rho \geq 1$, an algorithm A is called a ρ -approximation algorithm for MAX2SAT if for every 2CNF formula φ with m clauses, $A(\varphi)$ outputs a truth assignment satisfying at least $\rho \cdot \mu_{\varphi}$ of φ 's clauses, where μ_{φ} is the maximum number of clauses of φ satisfied by any truth assignment.

Consider the following polynomial-time reduction f from 3SAT to MAX2SAT:

Let $\varphi = c_1 \wedge \cdots \wedge c_m$ be a 3CNF formula with clauses c_1, \ldots, c_m and containing the propositional variables p_1, \ldots, p_u . Then $f(\varphi) = \langle \psi, k \rangle$ is defined as follows.

- The formula ψ will contain the propositional variables p_1, \ldots, p_u , as well as the new variables q_1, \ldots, q_u .
- For each clause $c_j = l_{j,1} \vee l_{j,2} \vee l_{j,3}$ of φ , we add the following 10 clauses to ψ :

$$(l_{j,1}), (l_{j,2}), (l_{j,3}), (q_j),$$

 $(\neg l_{j,1} \lor \neg l_{j,2}), (\neg l_{j,1} \lor \neg l_{j,3}), (\neg l_{j,2} \lor \neg l_{j,3}),$
 $(l_{j,1} \lor \neg q_j), (l_{j,2} \lor \neg q_j), (l_{j,3} \lor \neg q_j).$

That is ψ consists of the conjunction of the 10m resulting clauses.

- We let k = 7m.
- (a) Show that this reduction is correct.
- (b) Show that if there is a polynomial-time ρ -approximation algorithm for MAX2SAT for each $\rho < 1$, then P = NP.
 - Hint: use the function f described above.
- (c) Give a polynomial-time $\frac{1}{2}$ -approximation algorithm for MAX2SAT.