Computational Complexity

Homework Sheet 5

Hand in before March 14, 23:59
Preferably by email to J.M.Czajkowski@cwi.nl

Exercise 1 (2pt). Show that RP ⊆ NP.

Exercise 2 (4pt). Show that ZPP = RP ∩ coRP.

• Hint: use Markov’s inequality for showing that ZPP ⊆ RP ∩ coRP. If X is a non-negative random variable and a > 0, then:

\[\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}. \]

Exercise 3 (4pt). The problem MAX2SAT consists of all tuples \(\langle \varphi, k \rangle \) where \(\varphi \) is a 2CNF formula and \(k \in \mathbb{N} \) such that there exists a truth assignment \(\alpha : \text{var}(\varphi) \rightarrow \{0, 1\} \) such that \(\alpha \) satisfies at least \(k \) clauses of \(\varphi \). (Note: here we define a 2CNF formula as a CNF formula where each clause contains at most 2 literals. Note also: \(\varphi \) might contain several copies of the same clause.)

For every \(\rho \geq 1 \), an algorithm \(A \) is called a \(\rho \)-approximation algorithm for MAX2SAT if for every 2CNF formula \(\varphi \) with \(m \) clauses, \(A(\varphi) \) outputs a truth assignment satisfying at least \(\rho \cdot \mu_\varphi \) of \(\varphi \)'s clauses, where \(\mu_\varphi \) is the maximum number of clauses of \(\varphi \) satisfied by any truth assignment.

Consider the following polynomial-time reduction \(f \) from 3SAT to MAX2SAT:

Let \(\varphi = c_1 \land \cdots \land c_m \) be a 3CNF formula with clauses \(c_1, \ldots, c_m \) and containing the propositional variables \(p_1, \ldots, p_u \). Then \(f(\varphi) = \langle \psi, k \rangle \) is defined as follows.

• The formula \(\psi \) will contain the propositional variables \(p_1, \ldots, p_u \), as well as the new variables \(q_1, \ldots, q_u \).

• For each clause \(c_j = l_{j,1} \lor l_{j,2} \lor l_{j,3} \) of \(\varphi \), we add the following 10 clauses to \(\psi \):

\[
(l_{j,1}), (l_{j,2}), (l_{j,3}), (q_j), \\
(\neg l_{j,1} \lor \neg l_{j,2}), (\neg l_{j,1} \lor \neg l_{j,3}), (\neg l_{j,2} \lor \neg l_{j,3}), \\
(l_{j,1} \lor q_j), (l_{j,2} \lor \neg q_j), (l_{j,3} \lor \neg q_j).
\]

That is \(\psi \) consists of the conjunction of the 10m resulting clauses.

• We let \(k = 7m \).

(a) Show that this reduction is correct.

(b) Show that if there is a polynomial-time \(\rho \)-approximation algorithm for MAX2SAT for each \(\rho < 1 \), then \(P = NP \).

– Hint: use the function \(f \) described above.

(c) Give a polynomial-time \(\frac{1}{2} \)-approximation algorithm for MAX2SAT.