Exercise 1 (2pt). Define the complexity class

\[\text{DP} = \{ A \cap B \mid A \in \text{NP}, B \in \text{coNP} \}. \]

Let \(G = (V, E) \) be an undirected graph. A subset \(D \subseteq V \) of vertices is called a dominating set if for every \(v \in V \) it holds that (i) \(v \in D \) or (ii) there is some \(u \in D \) and there is an edge between \(u \) and \(v \) in \(G \). Consider the problem \text{EXACT-DS}:

\[\text{EXACT-DS} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph that has a dominating set of size } k \text{ but has no dominating set of size } k - 1 \}. \]

(a) Prove that \text{EXACT-DS} \in \text{DP}.

(b) Prove that if \text{DP} \subseteq \text{NP}, then the Polynomial Hierarchy collapses.

Exercise 2 (3pt). Prove that there is no polynomial-time algorithm \(A \) with access to a SAT oracle such that, on each input \(x \in \{0, 1\}^* \) representing a propositional formula \(\varphi \):

- \(A \) makes at most \(O(\log |x|) \) queries to the oracle, and
- if \(\varphi \) is satisfiable, \(A \) outputs a truth assignment \(\alpha \) that satisfies \(\varphi \),

unless \(P = \text{NP} \).

Exercise 3 (3pt). Define:

\[P_{/ \log} = \bigcup_{c,d \in \mathbb{N}} \text{DTIME}(n^c)/(d \log n). \]

That is, \(P_{/ \log} \) is the class of all languages that can be decided in polynomial time with \(O(\log n) \) bits of advice. Prove that \(\text{SAT} \not\in P_{/ \log} \), unless \(P = \text{NP} \).

- **Hint**: iterate over all possible advice strings of length \(O(\log n) \).

- **Hint**: you may assume that for any string \(x \) that represents a propositional formula \(\varphi \) and any truth assignment \(\alpha \) to (some of) the variables of \(\varphi \), one can in polynomial-time encode the formula \(\varphi[\alpha] \) as a string \(x' \) that is of the same length as \(x \)—where \(\varphi[\alpha] \) is obtained from \(\varphi \) by instantiating each variable \(z \) in the domain of \(\alpha \) by \(\alpha(z) \).

Exercise 4 (2pt). Let \(P_{/1} \) be the class of languages that can be decided in polynomial time with a single bit of advice (for each input size). That is \(P_{/1} = \bigcup_{c \in \mathbb{N}} \text{DTIME}(n^c)/1 \). Prove that \(P \not\subseteq P_{/1} \).

- **Hint**: use the following undecidable language \(\text{UHALT} \):

\[\text{UHALT} = \{ 1^n \mid n \text{'s binary expansion encodes a pair } \langle M, x \rangle \text{ such that } M \text{ is a Turing machine that halts on input } x \}. \]