Computational Complexity

Homework Sheet 4

Hand in before March 7, 23:59 Preferably by email to J.M.Czajkowski@cwi.nl

Exercise 1 (2pt). Define the complexity class

 $DP = \{ A \cap B \mid A \in NP, B \in coNP \}.$

Let G = (V, E) be an undirected graph. A subset $D \subseteq V$ of vertices is called a *dominating set* if for every $v \in V$ it holds that (i) $v \in D$ or (ii) there is some $u \in D$ and there is an edge between u and v in G. Consider the problem EXACT-DS:

EXACT-DS = { $\langle G, k \rangle \mid G$ is an undirected graph that has a dominating set of size k but has no dominating set of size k - 1 }.

- (a) Prove that $EXACT-DS \in DP$.
- (b) Prove that if $DP \subseteq NP$, then the Polynomial Hierarchy collapses.

Exercise 2 (3pt). Prove that there is no polynomial-time algorithm A with access to a SAT oracle such that, on each input $x \in \{0, 1\}^*$ representing a propositional formula φ :

- A makes at most $O(\log |x|)$ queries to the oracle, and
- if φ is satisfiable, A outputs a truth assignment α that satisfies φ ,

unless P = NP.

Exercise 3 (3pt). Define:

$$P_{/\log} = \bigcup_{c,d \in \mathbb{N}} DTIME(n^c) / (d \log n).$$

That is, $P_{/\log}$ is the class of all languages that can be decided in polynomial time with $O(\log n)$ bits of advice. Prove that SAT $\notin P_{/\log}$, unless P = NP.

- *Hint:* iterate over all possible advice strings of length $O(\log n)$.
- *Hint:* you may assume that for any string x that represents a propositional formula φ and any truth assignment α to (some of) the variables of φ , one can in polynomial-time encode the formula $\varphi[\alpha]$ as a string x' that is of the same length as x—where $\varphi[\alpha]$ is obtained from φ by instantiating each variable z in the domain of α by $\alpha(z)$.

Exercise 4 (2pt). Let $P_{/1}$ be the class of languages that can be decided in polynomial time with a single bit of advice (for each input size). That is $P_{/1} = \bigcup_{c \in \mathbb{N}} DTIME(n^c)/1$. Prove that $P \subsetneq P_{/1}$.

• *Hint:* use the following undecidable language UHALT:

UHALT = { $1^n \mid n$'s binary expansion encodes a pair $\langle M, x \rangle$ such that M is a Turing machine that halts on input x }.