Exercise 1 (4pt). Consider the following problem EXACTLY-2-IN-4-SAT:

Instance: A propositional formula φ in 4CNF—that is, a formula of the form $\varphi = c_1 \land \cdots \land c_m$, where each c_i is of the form $c_i = l_{i,1} \lor l_{i,2} \lor l_{i,3} \lor l_{i,4}$, where $l_{i,1}, l_{i,2}, l_{i,3}, l_{i,4}$ are propositional literals.

Question: Is there a truth assignment α to the variables occurring in φ that sets exactly 2 literals in each clause c_i to true?

Prove that EXACTLY-2-IN-4-SAT is NP-complete—that is, prove that is in NP and that it is NP-hard.

- **Hint:** reduce from a suitable variant of 3SAT.\(^1\)

Exercise 2 (2pt). Show that NP ⊆ EXP.

Exercise 3 (2pt). Let A be an NP-complete language. Let p be a polynomial and let M_A be a polynomial-time Turing machine such that, for all $x \in \{0,1\}^*$:

$$x \in A \text{ if and only if there exists some } u \in \{0,1\}^{p(|x|)} \text{ such that } M_A(x,u) = 1.$$

(a) Define the set $B = \{ \langle x, z \rangle \mid \text{there exists } z' \in \{0,1\}^* \text{ such that } |zz'| \leq p(|x|) \text{ and } M_A(x,zz') = 1 \}$. Prove that B is in NP.

(b) Suppose that we have access to A as an oracle. Basically this means that we have a subroutine that, given a string y, tells in a single step whether $y \in A$. (See Definition 3.4 of Arora & Barak, 2009.) Construct a polynomial-time Turing machine M_{search} that, given $x \in \{0,1\}^*$, if $x \in A$ outputs a string u such that $M_A(x,u) = 1$ and if $x \notin A$ outputs 0. Use (a).

Exercise 4 (2pt). Let A be a language. When a Turing machine M has access to the oracle A, we write M^A. We say that A is auto-reducible if there is a polynomial-time Turing machine M such that for all $x \in \{0,1\}^*$:

$$x \in A \text{ if and only if } M^A(x) = 1,$$

with the special requirement that on input x the Turing machine M^A is not allowed to query the oracle A for x.

Suppose that A is NP-complete. Prove that A is auto-reducible. Use Exercise 3.
