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Abstract

This paper shows the relevance of measurement theory for the linguistic
analysis of comparative statements. In particular, the paper focusses
on interadjective comparatives like ‘x is P -er than y is Q’ and compar-
atives involving multidimensional adjectives. It is argued that Bale’s
(2008) recent proposal to account for such comparatives is rather lim-
ited, and just one way to account for interadjective comparison. In fact,
it is shown that we can make use of recently developed measurement-
theoretic techniques in political economy to handle intersubjective com-
parisons of utility to account for interadjective comparatives as well.
This paper also discusses how to construct the desired scales, if one
starts with a delineation approach of comparatives.

1 Introduction

It is sometimes believed that we have two competing analyses of comparatives:
one that crucially uses degrees, and another that denies their existence. But
it is, of course, absolutely non-sensical to adopt the latter position. Nobody
can deny that we sometimes use measure-phrases in natural language, and
that they are used in comparatives as well. The issue is rather whether we
always use degrees when we evaluate comparatives, or whether this is not the
case. Moreover, if degrees are essential for the interpretation of a particular
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and especially in presentation. I would like to thank the anonymous reviewers of the Journal
of Semantics and the editor Bart Geurts for many useful comments and suggestions. I would
like to thank Jason Quinley for correcting the English.
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kind of comparative, we would like to know how fine-grained we should assume
these degree-structures to be. Measurement theory provides standard answers
to those questions, and it is only natural to assume that measurement theory
is relevant for natural language semantics as well (cf. Klein, 1991, Sassoon,
2010).

Measurement theory also helps us to see what is required to account of
comparatives like the following:

(1) x is P -er than y is Q.

In linguistics it is generally assumed that to make sense of such comparatives
we must make use of degrees. Either because both the P -er and the Q-er than
relation have the same zero-point and the same unit of measurement (in direct
comparisons like ‘this table is longer than that table is wide’), or in so-called
indirect, or relative comparisons (Bale, 2008) where the rank of the two items
is compared in their respective ‘P -er than’ and ‘Q-er than’ orderings. I will
show in this paper that Bale’s method is rather limited, and just one way to
account for interadjective comparison. Other ways are less committing. I will
also show that the issue of how to make sense of sentences like (1) is in a sense
already adequately handled in measurement theory. What is less clear is how
to construct the desired scales. Finally, I will suggest that making sense of
(1) invites several types of analyses of comparisons involving multidimensional
adjectives that linguists normally don’t take into serious account.

2 Orders, choice structures, and measurement

Comparative constructions are normally based on gradable adjectives (like tall
and warm). In semantics it is standard to distinguish two types of approaches
to the analysis of gradable adjectives: degree-based approaches and delineation
approaches. Degree-based approaches (e.g. von Stechow, 1984; Kennedy, 1999)
analyze gradable adjectives as relations between individuals and degrees, where
these degrees are thought of as scales associated with the dimension referred
to by the adjective. Individuals can possess a property to a certain measurable
degree. The truth conditions of sentences involving these adjectives are stated
in terms of degrees in well-known ways. Delineation approaches analyze grad-
able adjectives like ‘tall’ as simple predicates, but assume that the extension of
these terms are crucially context dependent. For our purposes, Klein’s (1980,
1991) approach is most relevant. Klein (1980) assumes that every adjective
should be interpreted with respect to a comparison class, i.e. a set of indi-
viduals. The truth of a sentence like John is tall depends on the contextually
given comparison class: it is true in context (or comparison class) c iff John is
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counted as tall in this class. Klein (1980) further proposes that the meaning
of the comparative John is taller than Mary is context independent and the
sentence is true iff there is a context (henceforth we will use ‘context’ instead
of the more cumbersome ‘comparison class’) according to which John counts
as tall, while Mary does not. If there is any context in which this is the case,
it will also be the case in the context containing only John and Mary.

Klein (1980) favors the delineation approach towards comparatives for a
number of reasons. First, a degree-based approach only makes sense in case
the comparative gives rise to a total ordering. But for at least some cases
(e.g. cleverer than) this doesn’t seem to be the case. Second, the delineation
account assumes that the meaning of the comparative ‘taller than’ is a function
of the meaning of ‘tall’, which — according to Klein— is more in line with
Frege’s principle of compositionality,1 and also accounts for the fact that in a
wide variety of languages the positive is formally unmarked in relation to the
comparative.

Van Benthem (1982) has shown how the ‘taller than’ relation can be de-
rived from how we positively use the adjective in certain contexts, plus some
additional constraints on how the meaning of the adjective can change from
context to context. This is done in terms of the notion of a context structure,
M , being a triple 〈X,C, V 〉, where X is a non-empty set of individuals, the set
of contexts, C, consists of all finite subsets of X, and the valuation V assigns
to each context c ∈ C and each property T those individuals in c which are to
count as ‘being T in c’.

This definition leaves room for the most diverse behavior of individuals
across contexts. Based on intuition (for instance by visualizing sticks of vari-
ous lengths), however, the following plausible cross-contextual principles make
sense, which constrain the possible variation. Take two individuals x and y in
context c such that M, c |= T (x)∧¬T (y). We now constrain the set of contexts
C by the following three principles: No Reversal (NR), which forbids x and y
to change roles in other contexts:

(NR) ¬∃c′ ∈ C : M, c′ |= T (y) ∧ ¬T (x).

This constraint allows both x and y to be tall in larger contexts than c.
However, once we look at such larger contexts, the Upward Difference (UD)
constraint demands that there should be at least one difference pair:

(UD) ∀c′ ∈ C : c ⊆ c′ → ∃z1, z2 : M, c′ |= T (z1) ∧ ¬T (z2).

1But see Von Stechow (1984) for an argument saying that also the degree-based approach
is in line with Frege’s principle.
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The final Downward Difference (DD) principle constrains in a very similar
way what is allowed if we look at subsets of c: if x and y are elements of this
subset, there still should be a difference pair:

(DD) ∀c′ ∈ C : (c′ ⊆ c & x, y ∈ c′)→ ∃z1, z2 : M, c′ |= T (z1) ∧ ¬T (z2).

If we say that ‘John is P -er than Mary’ iff there is a context c s.t. M, c |=
P (j) ∧ ¬P (m), Van Benthem shows that the comparative (given the above
constraints on context strucures) as defined above has exactly those properties
which we intuitively want for most comparatives (see below).

In the definition of a context structure we used above, context structures
give rise to orderings for any context dependent adjective. For convenience,
we will just limit ourselves to one adjective: P . If we do so, we can think of a
context structure as a triple 〈X,C, P 〉, where P can be though of as a choice
function, rather than as a general valuation function.

Definition 1.
A choice structure M is a triple 〈X,C, P 〉, where X is a non-empty set of
individuals, the set of contexts, C, consists of all finite subsets of X, and the
choice function P assigns to each context c ∈ C one of its subsets.

Notice that P (c) (with respect to context structure M) corresponds to the set
{x ∈ X : M, c |= P (x)} in our earlier formulation. To state the cross contex-
tual constraints somewhat more compactly than we did above, we define the
notion of a difference pair: 〈x, y〉 ∈ DP (c) iffdef x ∈ P (c) and y ∈ (c − P (c)).
Now we can define the constraints as follows (where c2 abbreviates c× c, and
D−1

P (c) =def {〈y, x〉 : 〈x, y〉 ∈ DP (c)}):

(NR) ∀c, c′ ∈ C : DP (c) ∩D−1
P (c′) = ∅.

(UD) c ⊆ c′ and DP (c) 6= ∅, then DP (c′) 6= ∅.
(DD) c ⊆ c′ and DP (c′) ∩ c2 6= ∅, then DP (c) 6= ∅.

If we say that x >P y, iffdef x ∈ P ({x, y}) and y 6∈ P ({x, y}), van Benthem
(1982) shows that the ordering as defined above gives rise to a strict weak
order.2,3 A structure 〈X,R〉, with R a binary relation on X, is a strict weak

2Notice that in contrast to Klein (1980), van Benthem (1982) does not existentially
quantify over comparison classes. One can show that given van Benthem’s constraints, this
doesn’t really matter. However, it is possible to slightly change the constraints such that
the difference becomes important. In van Rooij (2010a), it is argued that if one does so, one
can make a natural distinction between so-called explicit (‘John is taller than Mary’) and
implicit (‘John is tall compared to Mary’) comparatives.

3For the construction of weak orders based on ‘maximizing’ choice functions, see van
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order just in case R is irrreflexive (IR), transitive (TR), and almost connected
(AC):

Definition 2.
A (strict) weak order is a structure 〈X,R〉, with R a binary relation on X that
satisfies the following conditions:
(IR) ∀x : ¬R(x, x).
(TR) ∀x, y, z : (R(x, y) ∧R(y, z))→ R(x, z).
(AC) ∀x, y, z : R(x, y)→ (R(x, z) ∨R(z, y)).

If we now define the indifference relation, ‘I’, or in our case ‘∼P ’, as follows:
x ∼P y iffdef neither x >P y nor y >P x, it is clear that ‘∼P ’ is an equivalence
relation. Because of the latter fact, (strict) weak orders play an important role
in the theory of measurement.

The idea of measurement theory (Krantz et al, 1971) is that we repre-
sent properties of and relations between elements of certain abstract ordering
structures in terms of properties of and relations between real numbers that
we already understand much better. A quantitative measure based on an or-
dering like 〈X,R〉 is a representation of the qualitative ordering relation (like
taller than, represented by ‘R’) in terms of the quantitative ordering relation
greater than , ‘>’, between real numbers (R). Measurements normally start
with (strict) weak orders. It is well-known that such orders R can be turned
into linear orderings R∗ of equivalence classes of individuals that are connected
(∀v, z : vR∗z ∨ zR∗v). First, say that x is R-equivalent to y, x ∼R y, iffdef

neither xRy nor yRx. Take [x]∼R to be the equivalence class {y ∈ X|y ∼R x}.
Then we say that [x]∼R

R∗[y]∼R
iffdef xRy. Measures – i.e., real numbers –

are then assigned to elements of these equivalence classes. A measurement is
defined in terms of a (homomorphic) function f that assigns each element of
X to a real number such that ∀x, y ∈ X : xRy if and only if f(x) > f(y)
and to each y ∈ [x]∼R : f(y) = f(x). In general, there are many alterna-
tive mappings to f that would numerically represent the qualitative relation
R equally well. However, this mapping f is unique up to a certain group of
transformations. For instance, the mappings f and g to the (ordered) set of
real numbers represent the same (ordinal) ordering structure 〈X,R〉 in case
they can be related by a (strictly) monotone increasing transformation: for
any x, y ∈ X : f(x) > f(y) iff g(x) > g(y). Quantitative scales that are
unique up to such strictly monotone increasing transformations are called or-
dinal scales. Notice that in scales that are just ordinal scales, the numbers
represent nothing more than the ‘greater than’ relation. Thus, ordinal mea-
surements represent nothing more than qualitative orderings. In particular,

Rooij (2010b).
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the resulting numerical ordering is not a degree structure as invoked by tra-
ditional degree-based analyses of comparatives. A prominent example of an
ordinal scale used by linguists is Lewis’s (1973) comparative similarity ordering
used in the analysis of counterfactual conditionals.

3 Degrees: interval and ratio-scales

It is generally agreed (e.g. von Stechow, 1984) that there are at least two
types of examples for which more is required than just qualitative orderings
and we need degrees: (i) examples like (2-a), (2-b) and (2-c) that explicitly talk
about degrees, and (ii) examples like (2-d) (and perhaps (2-e)) that involve
two different types of adjectives:

(2) a. John is 5 centimeters taller than Mary.
b. John is twice as tall as Mary.
c. John is 1.80 meters tall.
d. John is taller than Mary is wide.
e. John is more happy than Mary is sad.

To account for degrees we need measurement theory. We have seen above that
a quantitative measure based on a linear order 〈X,R〉 is defined in terms of
a (homomorphic) function f that assigns each element of X to a real number
such that ∀x, y ∈ X : xRy if and only if f(y) > f(z). If we just want to
represent an ordinal scale, the set of mappings that would do this job would
just have to be unique op to strictly monotone increasing transformations. To
faithfully represent more informative ordering structures, however, the differ-
ent mappings should be unique up to a larger group of transformations.4

Suppose, for instance , that we have a collection of straight sticks of vari-
ous sizes and we assign a number to each stick by measuring its length using
a ruler. If the number assigned to one stick is greater than the number as-
signed to another stick, we can conclude that the first stick is longer than the
second. Thus a relationship among the numbers (greater than) corresponds
to a relationship among the sticks (longer than). This is all that is required
for ordinal scales. But measurement of length satisfies another constraint as
well. Suppose that we lay two sticks end-to-end in a straight line and measure
their combined length, then the number we assign to the concatenated sticks
will equal the sum of the numbers assigned to the individual sticks. Now an
additional relationship among the numbers (addition) corresponds to an addi-
tional relationship among the sticks, that of concatenation. Thus, to faithfully
represent this additional relationship among the sticks, the measures have to

4Where the notion of ‘group’ is used in the algebraic way.
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be related in an additional way as well. This additional constraint is captured
by demanding uniqueness with respect to a larger group of transformations.5

Ratio scales Suppose that the ordering structure can make sense not only of
sentences like ‘x is taller than y’, but also of sentences like (2-b) ‘John is twice as
tall as Mary.’ and (2-c) ‘John is 1.80 meter tall’. In this case we need a theory
of degrees that involves addition or multiplication. Standard measurement
theory gives us that for so-called extensional or additive magnitudes, and the
corresponding scales are called ratio scales. Standard examples of extensional
magnitudes are length, and duration. The corresponding algebraic systems are
called closed extensive structures. (Qualitative) ordering structures that give
rise to extensional measurement must come with an operation of concatenation,
a specified procedure for joining two objects, denoted by ‘◦’. Thus, the ordering
structures must be of the form 〈X,R, ◦〉, where operation ‘◦’ satisfies certain
conditions, like associativity.6

For mapping f to faithfully represent such an ordering structure it must
be the case that for all x, y ∈ X : f(x ◦ y) = f(x) + f(y) (of course, it must
also hold that xRy iff f(x) > f(y)). Just as before, this mapping is unique
up to a certain group of transformations. The group of transformations are
now all of the form g(x) = αf(x), with α > 0, which are known as similarity
transformations. The existence of α means that the unit of measurement
is arbitrary, but in extensional magnitudes we measure with respect to an
absolute zero-point. It is worth to point out that the scale structures invoked
in standard degree-based approaches (e.g. Kennedy, 1999, von Stechow, 1984)
are generally ratio-scales.

Interval scales Ratio-scales are very rich, but also presuppose a lot, in
particular, an absolute zero-point. But such absolute zero-points cannot always
be assumed. Still, even though we cannot assume an absolute zero-point, we
still want to interpret certain types of sentences for which we require more
than just an ordinal scale. For instance, suppose that the ordering structure

5In the following I will discuss only ordinal, ratio and interval scales, the scales considered
by Stevens (1946). Krantz et al. (1971) distinguish other scales as well, such as Log-interval,
difference, and absolute scales. Although also these scales are important to represent psy-
chophysical functions (Log-interval and difference scales) and probability (absolute scales),
I will ignore them in this paper.

6The triple 〈X,≥, ◦〉 is a closed extensive structure iff (i) 〈X,≥〉 is a weak order, i,e.,
‘≥’ is a reflexive, transitive, and connected relation; (ii) ‘◦’ satisfies weak associativity:
x ◦ (y ◦ z) ∼ (x ◦ y) ◦ z; (iii) ‘≥’ and ‘◦’ satisfy Monotonicity: x ≥ y iff x ◦ z ≥ y ◦ z iff
z ◦ x ≥ z ◦ y, and (iv) has the Archimedean property: If x > y, then for any v, w ∈ X,
there exists a positive integer n such that nx ◦ v ≥ ny ◦ w, where nx is defined inductively
as 1x = x, (n1)x = nx ◦ x.
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can make sense not only of sentences like ‘x is taller than y’, but also of things
like (2-a) and (3):

(3) x is P -er than y by more than v is P -er than w.

In measurement theory this is standardly done by taking a quaternary re-
lation D on X to be basic, and define the corresponding binary relation
in terms of it. Ordering structures in which such quaternary relations are
taken as basic are called ‘algebraic difference structures’. For a mapping
f to represent this latter type of information, it should be the case that
xyDvw iff f(x) − f(y) > f(v) − f(w). Algebra shows that a − b ≥ c − d
iff (αa+ β)− (αb+ β) ≥ (αc+ β)− (αd+ β) (where α > 0). This means that
the ordering of intervals between two numbers is preserved under a positive
linear transformation (meaning that (2-a) becomes meaningful). In fact, the
ratios between the intervals are preserved as well.7 A natural proposal (Krantz
et al, 1971) is then to assume that two mappings f and g faithfully represent
the same such an ordering structure, if f and g are the same up to a strictly
positive linear transformation, i.e., for any x ∈ X : g(x) = α(f(x)) + β, where
α, β are real numbers, and α > 0. The number α represents the fact that the
unit of measurement is arbitrary, like in ratio-scales. The difference between
interval-scales and ratio-scales is the use of the additional β. The number β
represents the fact that the ordering structure doesn’t have a fixed zero-point.
But such fixed zero-points are required to make sense of examples (2-b) and
(2-c). Quantitative scales that are unique up to such strictly positive linear
transformations are called interval scales, and the magnitudes measured this
way intensional magnitudes. Thus, in terms of interval scales we can interpret
examples like ‘x is taller than y’, (2-a), and (3), but not examples like (2-b)
and (2-c). Three well-known magnitudes that gives rise to an interval scale
(i.e., for which we need an interval-scale but don’t want a ratio-scale) are ‘util-
ity’, ‘(clock)time’ and ‘warmth’ (forgetting about Kelvin, for a minute). We
can measure temperature, for instance, in terms of degrees Celsius and degrees
Fahrenheit, and it is well-known that we can transform the one to the other by
means of a positive linear transformation: x degrees Celsius is 9

5
x+ 32 degrees

7Suppose that g is obtained by a positive linear transformation from f . This means that
g(x)−g(y) = αx+β−αy−β = α(x−y), for some α > 0. Similarly g(v)−g(w) = α(v−w).
But this means that g(x)−g(y)

g(v)−g(w) = f(x)−f(y)
f(v)−f(w) . Thus, we can also make sense of comparatives

like the following: ‘x is P -er than y by 2 times more than v is P -er than w’. At first it seems
possible to make sense of differences between intervals such that (3) is meaningful, but still
not make the above comparative meaningful. Scott and Suppes (1958) show, however, that
this is not the case if we want to reduce the direct measure of intervals like xy to the direct
measures of the individuals x and y themselves (f(xy) = f(x)− f(y)).
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Fahrenheit, and x degrees Fahrenheit is 5
g
x + (−32×5

9
) degrees Celcius.8 No-

tice that one degree Celsius warmer is not the same as one degree Fahrenheit
warmer (but as 9

5
degrees Fahrenheit warmer), and that 0 oC is not at all the

same as 0 oF , but rather as 32 oF .
It is clear that the distinction between ordinal scales and ratio-scales has

linguistic relevance. But this also holds for the interval vs. ratio distinction,
because there arguably are some linguistic examples that require an interval-
scale to make them meaningful, but for which we don’t want a ratio-scale. Two
such examples are it negative adjectives and similarity (or difference) compar-
isons. As for negative adjectives, suppose we want to give a representation in
terms of an order preserving real valued function f not only of the ordering
‘taller than’, 〈X,>T 〉, but at the same time also of the relation ‘shorter than’.
How should this function look like? There has been a lot of discussion of this.
According to Creswell (1976) and Klein (1980), one’s shortness is the same
as one’s tallness, it is just that the order is reversed. According to Bierwisch
(1984), one picks out the average, or prototypical value, p, and measures the
shortness of x as p−fT (x), where fT (x) gives x’s tallness. According to a very
prominent analysis (going back to Seuren (1984) and von Stechow (1984), but
most forcefully defended by Kennedy, 1999) the shortness of x is ∞− fT (x),
where ∞ is infinity. All of these approaches assume that ‘shortness’ should
be measured in terms of a ratio-scale, and none of them is uncontroversial.
Recently, Sassoon (2010) observed that to account for the data, Kennedy does
not need to make use of the unreal number ∞ to substract fT (x) from: any
real number n would do. Also if the shortness of x is not ∞ − fT (x) but
rather n− fT (x), one can explain why ‘y is 2 cm shorter than x’ is true iff ‘x
is 2 cm taller than y’ is true. Moreover, she points out that if the choice of
the real number n (i.e., the zero point) is left undetermined, one can explain
why the sentences ‘y is 3 times as short as x’ and ‘x is 180 cm short’ are not
meaningful. Formally, the reason is that the resulting ‘shorter than’ relation
gives rise to an interval scale, which does not have an absolute minimum: if
fS(y) = −6 = −fT (y), for instance, and fS(x) = −2 = −fT (x), then fS(y) is
three times as much as fS(x). But from this it doesn’t follow that we can thus
meaningfully conclude that y is three times as short as x, if shortness gives
(only) rise to an interval scale. To warrant this conclusion it has to be the case
that this ratio is preserved under any positive linear transformation. But this
is not the case: take for any z, gS(z) = fS(z) + 1. It follows that gS(y) = −5
and gS(x) = −1, meaning that gS(y) is as much as 5 times as much as gS(x).
The mapping gS(·) can obviously be defined as proposed by Sassoon (2010):
gS(z) = −fT (z) + 1. Although it still holds that ‘x is 4 cm shorter than y’ is

8Notice that the mapping from degrees Fahrenheit to degrees Celcius is the inverse of
the mapping from Celcius to Fahrenheit.
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true iff ‘y is 4 cm taller than x’ is true, the claim that ‘y is 3 times as short
as x’ is not true anymore. Thus, ratio-claims are correctly predicted not to be
meaningful if ‘shortness’ is measured in terms of an interval scale.

Consider the following similarity statement:

(4) John is more similar (different) to (from) Mary than Bill is to (from)
Sue.

In psychology, the notion of similarity plays an important role to account for
categorization. The two dominant models in this field are (i) the so-called
geometrical model (e.g. Shephard, 1962), and (ii) Tversky’s (1977) contrast
model. In the geometrical model, individuals are mapped into some (Eu-
clidean) space, and their similarity is measured in terms their closeness in this
space. Although this model is very natural for the representation of some fea-
tures, such as colors, it is much less natural to represent the similarities of, for
instance, natural kinds. Tversky’s (1977) contrast model seems more suitable
here. Tversky (1977) measures the similarity of two individuals in terms of
the sets of (qualitative) features they share and which they differ on. Tversky
proves that his notion of similarity gives in general rise to an interval scale.
And that seems appropriate: statements like ‘x is similar to y to degree n’
and ‘x is twice as similar to y than v is to w’ only make sense in exceptional
circumstances.

4 Interadjective comparisons

We want to make sense of some interadjective comparatives like

(1) x is P -er than y is Q.

As before, we need particular structures to do this. But we don’t necessarily
want these structures to also support comparatives involving magnitudes of
difference or examples like (5).

(5) x is three times P -er than y is Q.

One prominent recent account (Bale, 2008) predict these should be ok;9 two
alternative analyses, based on extensions of the standard measurement and the
delineation-based approach developed earlier in this paper, support a more lim-
ited set of comparative statements. I will argue that these alternative analyses

9Just like the fuzzy logic account of comparatives.
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are much more general, and sometimes more accurately capture the linguistic
facts.

4.1 Bale’s analysis of indirect comparison

In linguistics it is generally assumed that to make comparatives like (1), we
have to make use of degrees. Either because P and Q are commensurable
adjectives like ‘long’ and ‘wide’ (their orders have the same zero-point and the
same unit of measurement), or the comparative is seen as an indirect or relative
comparison (Bale, 2008) where the rank of the two items is compared in their
respective ‘P -er than’ and ‘Q-er than’ orderings. Thus, if we limit ourselves to
x, y and z, and y >P x >P z and z >Q x >Q y, then (1) is true on its indirect
reading.10,11 Bale argues that relative comparison is also relevant for cases like
the following:

(6) Ella is heavier for a baby than Denis is for a three year old.

And indeed, also here direct comparison doesn’t make a lot of sense.
Bale’s (2008) account of relative comparisons starts out with a set of (linear)

orderings 〈X,>P 〉, 〈Y,>Q〉, etc. From this he constructs a universal ordering
out of this as follows. First, he defines the bale-rank of x ∈ X with respect
to the ordering 〈X,>P 〉 as the amount of (equivalence classes of) individuals
ordered below x: bP (x) =df |{[y]P ∈ X : x >P y}|, where [y]P is an equivalence
class with respect to >P (z ∈ [y] iff y 6>P z and z 6>P y). Then he proposes to
order individual-property pairs in terms of their bale-ranks: 〈x, P 〉 > 〈y,Q〉 iff
bP (x) > bQ(y).12 Of course, this doesn’t make much sense, unless the orderings
〈X,>P 〉, 〈Y,>Q〉, etc. give rise to equally many ranks. This indicates that
Bale’s proposal is very limited. However, there exists a trick to guarantee that
the orderings have equally many ranks: we can make use of normalization: the
bale-rank of x given ordering 〈X,>P 〉 depends on the number of ranks of this

ordering: bP (x) =df
|{[y]P :x>P y & y∈X}|

|[x]P :x∈X| . But for this normalization to make any

sense (to be well-defined), it is required that the number of equivalence classes
is finite, meaning that the original order has to have a minimal and a maximal

10Kennedy (1999) claims that only ‘direct’ comparisons make sense, or ones reducible to
such direct ones. Though I agree that not everything is possible, I agree with Bale and many
others that Kennedy’s constraint is too strict.

11Bale (2008) argues that from the truth of the comparative ‘x is P -er than y is Q’ it does
not follows that x is P and that y is Q. It certainly doesn’t follow from ‘the table is higher
than it is wide’, but also not from ‘That baby is taller than it is old’, or so I would say.

12The bale-rank is really the same as the Borda-count in social choice theory. One reviewer
suggested that Bale’s construction is a special case of the Mostovski collaps in set theory. If
that is true (I am not sure), linearity of the orders is not essential, but well-foundedness is.
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element.13 Thus, our normalization trick can only be used in a very limited
set of circumstances.

What kind of scale does Bale (2008) end up with? It is easy to see that
he ends up with a ratio scale.14 Indeed, the resulting ordering gives rise to an
obvious 0 and 1: bP (x) = 0 = bQ(y) in case x is lowest in ordering 〈X,>P 〉
and y lowest in ordering is lowest in 〈Y,>Q〉, and bP (x) = 1 in case x is the
highest in the former ordering. Recall that if the ordering 〈X,>P 〉 gives rise
to a ratio-scale it makes sense to make comparisons like ‘x is three times as
P as y’. This, of course, is thus immediately predicted by Bale: statements
like ‘x is three times as P as y is Q’ make perfect sense. Apart from the fact
that it is not obvious that such interadjective comparisons always make sense
(see section 4.2), it is also surprising, given that he started out (possibly) with
two ordinal scales 〈X,>P 〉 and 〈Y,>Q〉. A similar objection goes as follows:
It it is only natural to assume that a standard comparative like ‘x is P -er
than y’ is just a special case of the subdeletion comparative-construction ‘x
is P -er than y is Q’. It is special, because with standard comparatives the
two adjectives involved are the same. From this it follows that if restricted
to adjective P , the two orderings should be the same. And indeed, it follows
by Bale’s construction that ‘x is P -er than y’ is true with respect to ordinal
scale 〈X,>P 〉 if and only if it is true on the universal ordering. However, if
the ‘direct’ P -measure gives rise to a ratio-scale, the relative P -measure of any
object x is in general not the result of a linear transformation of its direct
measure.15 Moreover, if the ‘direct’ measure only gives rise to an ordinal scale,
the universal ordering allows for much more specific comparatives. Although
the 〈X,>P 〉 was only an ordinal scale, the universal ordering was a ratio-scale,
and thus contains enough information to evaluate comparatives like ‘x is three
times as P as y’. Thus, this comparative is meaningful on the universal scale,
though not on its original scale: a surprising consequence. Indeed, if we take
into account two adjectives of which (at least) one only gives rise to an ordinal
scale, the combined scale cannot be more than an ordinal scale.

These last criticisms, however, are not as serious as it might seem. The
reason is that Bale (2008) actually started out with more than suggested: he
started out with two orderings that determine the relative P - and Q-ness.
These orderings, however, give rise to ratio-scales. Bale assumes that ‘x is
higher than y is wide’ can be interpreted in (at least) two different ways. One
way to account for this comparative is in terms of what Bale calls ‘direct’
measurement (we measure the height and width in terms of centimeters, and
then compare). On a second reading the evaluation of this comparative de-

13I owe this observation to an anonymous reviewer.
14At least, if 〈X,>P 〉 and 〈Y,>Q〉 are known.
15I owe this observation to an anonymous reviewer.
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pends more on the relative length and width. But to make sense of this claim,
and not to fall in the above described problem, Bale also has to assume that
standard comparatives like ‘x is three times as high as y’ can be given such
a relative reading. Similarly for adjectives that normally are assumed only
to give rise to an ordinal scale. The question is whether this consequence is
desired. The major difficulty of Bale’s approach, however, is clearly that it
can be used only in a very limited set of circumstances: the different orderings
musst have equally many ranks. One wonders whether it is not possible to
account for interadjective comparisons in other circumstances as well.

4.2 A measurement-theoretic analysis of interadjective
comparisons

If we concentrate on comparisons that involve different types of adjectives, we
can see that there is a crucial difference between what is required to make
sense of (7) and (8):

(7) John is taller than Mary is smart.

(8) John is 5 cm taller than Mary is wide.

It is obvious that the purely qualitative analysis of Klein (1980) discussed
above cannot account for (8). But even if we make use of explicit measures,
the requirement on how specific one should think of degrees to make make
sense of (8) is quite different from the ‘type’ of degree one needs to account
for (7). Suppose we can make sense of (7). Does it follow from this that we
can thus also make sense of (9)?

(9) ?John is 5 times as tall as Mary is smart.

We have seen that according to Bale (2008) the answer must be positive. The
question is whether it needs to be.

Recall that according to Bale an analysis of indirect comparison should also
be able to account for (6).

(6) Ella is heavier for a baby than Denis is for a three year old.

It is, I believe, an interesting observation to see that the above type of com-
parison is virtually identical to the one in (10) which plays a major role in
political economy:

(10) Action x is more useful for John than action y is for Mary.
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More in general, the issue of interadjective comparison is structurally analogous
to the issue how to account for intersubjective comparison of utility in political
economy and social choice theory (see Sen, 1970 for overview).16 The different
subjects (e.g. utilities for John and for Mary) in economics play the role
analogous to the different adjectives in cases we consider. This observation
is important, because by analogy we can learn from political economy what
kinds of measurement-theoretic structures we need to account for particular
types of interadjective comparisons.

Although there exists a large group of economists who claim that state-
ments like (10) make sense, almost nobody claims that (11) is sensible:

(11) Action x is 5 times as useful for John than action y is for Mary.

On the other hand, the meaningfulness of the following type of statement is
disputed by far less political economists:

(12) Action x is more useful for John than y by more than action v is more
useful for Mary than action w.

Notice that the required conditions for a statement like (12) to be meaningful
are similar to the conditions under which an interadjective comparison state-
ment like (13) to be meaningful:

(13) John is taller than Mary by more than this room is warmer than that
room.

To make sense of the difference in meaningfulness between these types of
comparisons, we can make use of measurement theory again.

We have seen above that measurement theorists distinguish ordinal versus
interval versus ratio scales in terms of constraints of transformations. The
scales are based on the assignment of a measure to a set of individuals. The
crucial idea to account for interadjective comparison is to define scales based
on the assignment of measures to a set of individual-adjective pairs. In the
previous sections we assumed that to represent an ordering 〈X,>〉 numerically,
we define an order-preserving function f from X to the set of real numbers R.
To make sense of interadjective comparisons, we can think of the domain not
just as a set of individuals, but rather as a set of individual-adjective pairs.
Thus, if Ad is the set of relevant adjectives, we should now think of f as a
function from X×Ad to R. Once we have such a function, we can make sense
of interadjective comparisons. But, of course, assuming any such function is

16The issue of how to make sense of interpersonal comparisons of utility is taken to be
important in social choice theory, because it allows in a natural way to save the theory from
Arrow’s (1950) impossibility results (cf. Harsanyi, 1955; Sen, 1970).
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rather ad hoc, and as before, we want this function to be invariant under some
transformations. But not any transformation will do: if f(〈x, P 〉) = 2 and
f(〈y,Q〉) = 1, the transformation that maps any f(〈z, S〉) into −f(〈z, S) will
reverse the ordering, which is something that we don’t want.

Let us first look at the transformations that preserve the ordinal structure
of interadjective comparisons: the type of transformations that already allow
for comparisons like (2-d) and (7). The only thing that is needed is that the
function f from X×Ad to R should be unique up to strictly monotone increas-
ing transformations. Thus, it should be the case that f(〈x, P 〉) > f(〈y,Q〉) iff
g(〈x, P 〉) > g(〈y,Q〉), i.e., if g behaves monotone increasingly w.r.t. f . Thus,
we can think of g as defined in terms of a strictly monotone increasing function
ϕ from real numbers to real numbers such that g(〈x, P 〉) = ϕ(f(〈x, P 〉)) for all
x ∈ X and P ∈ Ad. We might call this type of ordinal interadjective ordering
relation a co-ordinal scale.

The types of transformation that preserves differences, and ratios between
differences, and thus allow for comparisons like (13) (and (12)) are the strictly
positive linear transformations. Thus, the mapping g from X × Ad to R
gives rise to the same differences, and ratios between differences, as mapping
f iff g can be derived from f by means of a positive linear transformation:
∀〈x, P 〉 ∈ X×Ad : g(〈x, P 〉) = α×(f(〈x, P 〉))+β, where α, β are real numbers,
and α > 0. Notice that neither β nor α depends on the adjective. Let us
call this type of interadjective ordering relation a co-interval scale.17 Observe
that just as interval-scales are all that is needed to account for examples like
(2-a), co-interval scales are all that is needed to make comparatives like (8)
meaningful.18

The types of transformation, finally, for which comparisons like (9) make
sense as well are those that also preserve addition and multiplication. The idea
of such a transformation is that it can be done with respect to an independent
norm. Typically, this norm is the minimum, or zero. Thus, now the mapping
g from X × Ad to R is considered to be ‘the same’ as mapping f iff g can be
derived from f by means of a similarity transformation: ∀〈x, P 〉 ∈ X × Ad :
g(〈x, P 〉) = α×f(〈x, P 〉), for some α > 0. In analogy with what we did before,
we will call this type of ordering a co-ratio scale. Notice that length and width
can be compared in this strong sense, because they share their minimum, but
that this is not the case for length and intelligence, for instance.19

17In fact, there is a different constraint as well that still might be called ‘co-interval’: g
is ‘the same’ as mapping f iff ∀〈x, P 〉 ∈ X × Ad : g(〈x, P 〉) = α × (f(〈x, P 〉)) + βP , where
α, βP are real numbers. This time βP is dependent on the adjective P .

18Which doesn’t mean that we ever make such comparisons if we can only construct a
co-interval scale.

19At least, if not taking in their relative sense as meant by Bale.
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In general, the set of measurement functions that take as input all individual-
adjective pairs and count as ‘the same’ will probably not be closed under many
transformations.20 However, if we limit the functions to proper subsets of
X × Ad it might, and which transformations it satisfies will depend on the
limitation we consider. It seems natural to assume that if we limit ourselves to
the adjectives ‘tall’ and ‘wide’ measured in an absolute way, for instance, we
end up with a ratio-scale. Thus, if we limit ourselves to the dimensions height,
width, and depth, we can assume that the set of measurement functions F
is closed under similarity transformations. If we take other adjectives, or di-
mensions, into account as well for which interadjective comparisons still make
sense, we can assume a different set of measurement functions H closed under
strictly monotone increasing transformations (or even positive linear transfor-
mations). If not all interadjective comparisons make sense, this set H does not
include the whole set X × Ad as its domain.

The set of measurement functions closed under similarity transformations
might be larger than one might think initially. Making use of normalization, I
think that the following types of comparison should give rise to a ratio-scale:

(14) a. This table is more red than that that chair is blue.
b. A bat is more of a bird than a whale is a fish.

What seems to go on in (14-a), for example, is that we measure the redness
of this table, and the blueness of that chair, in terms of the similarity (after
normalization) with the prototypes of red and blue. One can make use of a
ratio-scale in this case because the prototypes function as the obvious min-
ima (maximal similarity is minimal difference). Maxima can be determined
similarly. This is very close to the comparison of deviation cases discussed
by Kennedy (1999). Bale shows that we can end up with co-ratio-scales as
well if we start out with the relative positions in the respective scales. But
we have seen that at least a parallel case of intersubjective utility comparison
is taken to be at most co-interval according to economists. And given the
scale-structures of tallness and wisdom (they don’t have maximal elements),
Bale cannot account for a parallel example like ‘x is taller than y is wise’. It
doesn’t seem to be a major claim to say that many interadjective comparisons
are at most co-ordinal. Out of context, numbers assigned to x’s tallness and
y’s wisdom to be compared with each other don’t seem to represent much.

We have seen how to characterize co-ordinal scales, but how can we con-
struct one? We have seen that it is easy to construct rich interadjective mea-
surements. But how can one construct a notion of interadjective measurement

20Though this might depend on whether we want the comparative to be ‘direct’ or ‘indi-
rect’ in the sense of Bale (2008).
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that gives rise to weaker scales only?

4.3 Constructing co-ordinal and co-interval scales

Bale started out with a number of ordinal scales, and wondered how to turn
this into a universal scale. Bale concluded that this is possible only if we
assign numbers to the ranks. However, it seemed that if we want to make
sense of comparatives involving two adjectives that themselves only give rise
to ordinal scales we do not want numbers. In the previous section we have seen
that it is possible to do so by making use of co-ordinal measurements. But
how can such a measurement be constructed? In this section I will sketch two
possible ways to go. The first construction will be very similar to what we did
in section 2, but this time involves not just individuals, but rather individual-
property pairs. The second construction is really due to Klein (1980), following
McConnell-Ginet (1973).

In section 2 we constructed a ‘P -er than’ ordering out of a choice structure.
Now we will suggest that exactly the same idea can be used to construct a in-
teradjective ordering, if we take the objects to be individual-adjective pairs,
instead of individuals. Let X∗ = X ×Ad, where X is a set of individuals and
Ad a set of adjectives or properties. Assume that C is a set of finite subsets
of X∗. We make use of the abstract ‘choice function’, ‘Lots’, and say that
〈x, P 〉 ∈ Lots(c) means that x has lots of P -ness compared to the properties
other individuals have in c. We assume that the constraints on how ‘choice
function’ ‘Lots’ behaves among different comparison classes (of individual-
adjective pairs) are just the same as the constraints that choice function P
had to obey on comparison classes of individuals in section 2. If we then say
that 〈x, P 〉 > 〈y,Q〉 iff 〈x, P 〉 is an element of Lots({〈x, P 〉, 〈y,Q〉}), but 〈y,Q〉
is not, it immediately follows that the ordering relation between individual-
adjective pairs will be a strict weak ordering, giving rise just to an ordinal scale.
In terms of measurement theory, it still holds that g would be an equally good
representation of the order as f , g ≈ f , iff ∀α, β ∈ I × Ad : f(α) > f(β) iff
g(α) > g(β). But if we want to make sure that it doesn’t make much sense
to say things like ‘x is taller than y is intelligent’, we cannot assume that all
the intercontextual constraints of section 2 are obeyed in general. Perhaps in
general we want the ordering relation only to be a strict partial order,21 and
perhaps even less (e.g. only acyclic).22,23

21A relation R gives rise to a strict partial order iff R is (i) irreflexive (∀x : ¬xRx), and
(ii) transitive (∀x, y, z : xRy ∧ yRz → xRz).

22A relation R is acyclic iff there are no x1, ..., xn such that x1Rx2, x2Rx3, ...., xn−1Rxn

and xnRx1. Notice that R is irreflexive and asymmetric if it is acyclic.
23For a discussion of how to construct (among others) strict partial orders and semi-orders
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In the above construction I assumed that whether or not 〈x, P 〉 ∈ Lots(c)
holds is a primitive fact of our model. But perhaps one would like to determine
its truth value in a somewhat different way.

Although Klein (1980) is best known for his comparatives as sketched in
section 2, he already suggested an analysis of subdeletion comparatives that
is somewhat richer.24 Rather than quantifying over comparison classes, he
existentially quantifies over (the meanings of) modifiers of adjectives, like very
and fairly. One motivation for quantifying over such modifiers is to be able
to account for subdeletion comparatives like (15-a), which are interpreted as
something like (15-b) as suggested earlier by McConnell-Ginet (1973).

(15) a. John is more happy than Mary is sad.
b. ∃f ∈ {very, fairly, quite, ...}[f(Happy)(j) ∧ ¬f(Sad)(m)].

Klein (1980) accounts for modifiers of adjectives in terms of comparison classes
and shows that existentially quantifying over comparison classes is only a spe-
cial case of quantifying over these modifiers. To illustrate this, suppose we
have a set of 4 individuals: X = {w, x, y, z}. One comparison-class, call it c0,
is X. Suppose now that P (c0) = {w, x}, and (thus) P (c0) = {y, z} (with Y as
the complement of Y with respect to the relevant comparison class). We can
now think of P (c0) and P (c0) as new comparison classes, i.e., P (c0) = c1, and
P (c0) = c2. Let us now assume that P (c1) = {w} and P (c2) = {y}. If so, this
generates the following ordering via Klein’s definition of the comparative we
used before: w >P x >P y >P z. Let us now assume that f is a modifier of ad-
jectives. According to Klein’s (1980) final analysis, he represents comparatives
of the form ‘x is P -er than y’ as follows:

(16) ∃f [f(P )(c0)(x) ∧ ¬f(P )(c0)(y))]

To continue our illustration, we can define the following set of modifier func-
tions on domain X in terms of the behavior of P with respect to different
comparison classes: f1(P )(co) = P (c0), f2(P )(co) = P (P (c0)), f3(P )(co) =
P (P (c0))∪P (P (c0)), and f4(P )(co) = c0. Thus, f1(P )(co) = {w, x}, f2(P )(co) =
{w}, f3(P )(co) = {w, x, y},25 and f4(P )(co) = {w, x, y, z}. Of course, one can
similarly stipulate that f1(Q)(co) = Q(c0), f2(Q)(co) = Q(Q(c0)), f3(Q)(co) =
Q(Q(c0)) ∪ Q(Q(c0)), and f4(Q)(co) = c0 for adjective (choice function) Q.
Take F to be {f1, f2, f3, f4}.26 If we limit ourselves to adjective P , this new

based on a Klein-based analysis of comparatives, see van Rooij (2009).
24This paragraph comes from van Rooij (2008). More recently, Doetjes (2009) argued in

favor of this construction of Klein (1980) to account for comparisons in general.
25Thanks to a reviewer for spotting an earlier mistake.
26Observe that if we allow the starting comparison classes to vary, it is straightforward to
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analysis of the comparative gives rise to the same order: w >P x >P y >P z.
Moreover, any of those comparatives can only be true according to the new
analysis, if it is true according to the old analysis: The statement ‘w >P x’
is true, for instance, because of function f2. But f2(P )(c0)(w) ∧ ¬f2(P )(c0)(x)
holds iff P (c1)(w)∧¬(P )(c1)(x), which demonstrates (for this special case) that
the old analysis is indeed a special case of the new analysis. What is inter-
esting from our perspective is that Klein’s analysis is immediately an analysis
of interadjective comparisons based on the meaning of adjectives in different
comparison classes. One might argue, however, that the analysis is too general:
it seems to predict that all interadjective comparisons make sense, which is a
false prediction. This counterargument is based on the assumption that these
functions f always have to be total, applicable to any adjective. But, of course,
one does not need to accept this, if one adopts Klein’s proposal: the functions
can just be partial, and the domain on any of these functions are just those
adjectives for which interadjective comparisons make sense.

It seems to be the case that for many interadjective comparisons, compara-
tives involving such phrases as ‘much more’, ‘a bit more’, etc. make sense.
This suggests that what is involved is at least a co-interval scale, though
one with inexact numbers. Can we think of a construction that gives rise
to such a co-interval scale that is not a co-ratio-scale? Klein’s construction
gives rise, in general, only to an ordinal scale. However, in terms of his con-
struction one could construct something like an interval scale as well. Notice
first that according to the above construction, one can order the modifiers
in terms of what these modifiers do: f2 ≥ f1 ≥ f3 ≥ f4, because for all
x ∈ X : f2(P )(c0)(x) |= f1(P )(c0)(x) |= f3(P )(c0)(x) |= f4(P )(c0)(x).27 I sug-
gest that in terms of this extra information one can also account for sentences
as (3), (13), and (17).

(17) x is P -er than y by more than v is Q-er than w.

Here is the idea: first one can select the set of fs which make ‘x is P -er than
y’ true: {f ∈ F : f(P )(c0)(x) ∧ ¬f(P )(c0)(y))}. Call this set F(P )(〈x, y〉). In
a similar way we can define F(Q)(〈v, w〉). Now one can say that (17) is true
iff F(Q)(〈x, y〉) ⊂ F(P )(〈x, y〉). Similarly, one could say that (18),

(18) x is 5 times as P as y is Q.

is true, for instance, iff the set of fs which make f(P )(c0) true28 is five times

account for comparisons like (6).
27It is sometimes claimed that from ‘x is P -er than y is Q’ it follows that x is P . This

could be accounted for by stipulating that for interadjective comparisons we look only at
the ‘positive’ modifiers (in our case, f1 and f2).

28The use of similar sets has been proposed by Klein (1991) already, to account for com-
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as large as the set of fs which make f(Q)(c0) true. Thus, one could think of
the construction as even resulting in a (co)-ratio-scale. This is not meant to
be a very serious suggestion, but it just shows that with a little imagination
one can construct scales that can – at least in principle – account for (more
involved) interadjective comparisons.

5 Multidimensional adjectives

‘Clever’ and ‘big’ are usually taken to be multidimensional adjectives. It is then
standardly assumed that each ‘dimension’ gives rise to a separate ordering,
and that whether somebody is more clever/big than somebody else depends
then, somehow, on these separate orderings. This suggests that our above
analysis of inter-adjective comparisons is relevant as well for the analysis of
comparatives involving multidimensional adjectives. Indeed, this is what I will
suggest, which is rather different from the standard analysis.

Let us assume, for the sake of argument, that there are only two proper-
ties/dimensions associated with being clever: an ability to manipulate num-
bers, and an ability to manipulate people. One natural idea (e.g. Klein, 1980)
is then to claim that John is cleverer than Mary iff John is better both in
manipulating numbers and in manipulating people. More in general, let us as-
sume that if ‘>C ’ depends on ‘>C1 ’, ‘>C2 ’, and ‘>C3 ’, then x >C y iff x >C1 y,
x >C2 y, and x >C3 y. Of course, this only gives rise to a strict partial order.29

To come back to our example, suppose Sue is worse than John in manipulating
numbers but better in manipulating people. According to the above suggested
analysis, it is neither the case that John is cleverer than Sue, nor that Sue
is cleverer than John, without them being necessarily equally clever. This is
a typical possibility if ‘cleverer than’ only gives rise to a strict partial order.
But perhaps we want to end up with more. I am not sure whether we always
want more, but sometimes we certainly do.30 If Sue is only a slightly bit worse
than John in manipulating numbers, but much better in manipulating people,
I take Sue to be cleverer than John. Or take for instance the adjectives ‘useful’
or ‘beautiful’. It is obvious that one action, object, or individual can be more
useful or beautiful than another and that the usefulness or beauty of something
depends on various factors. Still, it is widely agreed in economics (and, I think,
daily life) that ‘being more useful than’ gives rise to (at least) a strict weak

paratives with measure phrases.
29Recall that R gives rise to a strict partial order if it is irreflexive and transitive. For R

to give rise to a weak order, it also has to be almost connected (cf. section 2).
30Lewis (1973), for instance, argues that comparative similarity between worlds is a weak

order, rather than a partial order. For discussion, see Morreau (ms).
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order. Similarly for constructions like ‘better than’, ‘more beautiful than’ and
many others.

Let us assume that ‘>C ’ depends on ‘>C1 ’, ‘>C2 ’, and ‘>C3 ’. How can we
determine ‘>C ’, such that this gives rise to a (strict) weak order rather than
just a strict partial order? One idea would be to construct a lexicographical
ordering, meaning that we first look only at ‘>C1 ’, and only in case of a tie
look at ‘>C2 ’. If x and y are then still indistinguishable, finally look at ‘>C3 ’.
Lexicographical orderings, however, are the exception, rather than the rule.
Can we not use a more ‘democratic’ procedure? We can, and the most natural
way to reach this goal is to allow for interadjective comparisons. One way to
go would be to follow Bale (2008) again: construct a ‘universal’ measurement
system, and somehow construct ‘>C ’ out of that. This is certainly possible,
but the use a ratio-scale is again not required. Suppose, for instance, that
we assume (only) co-ordinal invariance, that is, f and g (functions from X ×
{C1, C2, C3} to R) are considered to be ‘the same’ iff they can be related to
each other by a strictly increasing monotone function.

Let us also assume that no-one of {>C1 , >C2 , >C3} ‘dictates’ the ordering
relation >C (for instance, we don’t want ‘>C ’ to be a lexicographical ordering
based on {>C1 , >C2 , >C3}).31 Now one can prove that under some natural
assumptions x ≥C y iff minif(〈x,Ci〉) ≥ minif(〈y, Ci〉).32 Alternatively, one
could propose that x ≥C y iff maxif(〈x,Ci〉) ≥ maxif(〈y, Ci〉). Of course,
we can make stronger assumptions on how to compare the different aspects
of C-ness. If we assume that the mapping g from X × {C1, C2, C3} to R is
considered to be ‘the same’ as mapping f iff ∀〈x,Ci〉 ∈ X × {C1, C2, C3} :
g(〈x,Ci〉) = α× f(〈x,Ci〉) + β, for some α, β > 0, and moreover assign weighs
to the aspects, we can end up with a ‘C-er than’ relation either defined as (i)
x ≥C y iff

∑
iwi×f(〈x,Ci〉) ≥

∑
iwi×f(〈x,Ci〉),33 or as (ii) x ≥C y iff

∏
iwi×

f(〈x,Ci〉) ≥
∏

iwi × f(〈x,Ci〉). It is sometimes argued that if C depends on
multiple dimensions, comparatives of the form ‘x is C-er than y’ always involve
just one dimension, and the ordering is still just a weak ordering (or more).
Though observing the frequent use of abstract comparatives like ‘better than’
or ‘more useful than’ makes this strong claim rather dubious, it cannot be
denied that in practice we only take a limited set of dimensions into account
when evaluating such a comparative. In fact, this can be easily modeled by
making the weigh-function context dependent: wi = 0, if dimension Ci is not

31This can be formalized by a notion of permutation invariance: Let π be a permutation
of {C1, C2, C3}. If f(〈x,Ci〉) = g(〈x, π(Ci)〉) for all x and i, then f(〈y, C〉) > f(〈z, C〉) iff
g(〈y, C〉) > g(〈z, C〉) for all y, z ∈ X.

32This is really the counterpart of Rawls’s (1971) welfare function in political economy.
33This is the counterpart of Harsanyi’s (1955) welfare function. In fact, Harsayni does not

even use a weigh function.
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taken into account. The main point of this section was to show that once we
allow for interadjective measurement, comparisons involving multidimensional
adjectives can be strengthened to weak orders in a natural way.

6 Conclusion

Thinking of semantics as the representation of linguistic meaning in terms of
mathematical structures that we understand well, the main goal of this paper
was to investigate what is required in order to account for several types of
interadjective comparative statements. According to Stevens (1959) and Car-
nap (1966), in science one generally starts with classificatory concepts, later
on invent orderings, which finally evolve to more and more fine-grained mea-
surement scales. In this paper I discussed the relations between these three
‘levels’ of talking about phenomena. I indicated what kind of comparative
statements can be accounted for by taking the classificatory concepts as ba-
sic, and discussed what more has to be assumed if we want to make sense of
other comparative statements. I concentrated on interadjective comparisons
and pointed out an interesting relation between this and the analysis of inter-
subjective comparisons of utility. I discussed a number of constructions that
can be used to build interadjective comparisons, and I pointed out that such
comparisons are required as well if one wants to account for the intuition that
at at least some multidimensional adjectives give rise to a weak ordering rela-
tion. This paper does not solve the empirical question what representational
structures, or constructions, we actually use. But I argued that some of the
prominent analyses are less obvious than they might seem, and pointed to
some other possibilities. I hope this was an (even?) more useful thing to do
than it was clever.
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