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Abstract

This paper presents and defends a way to add a transparent truth pred-
icate to classical logic, such that T 〈A〉 and A are everywhere intersub-
stitutable, where all T -biconditionals hold, and where truth can be made
compositional. A key feature of our framework, called STT (for Strict-
Tolerant Truth), is that it supports a nontransitive relation of conse-
quence. At the same time, it can be seen that the only failures of transi-
tivity STT allows for arise in paradoxical cases.

1 Introduction

A transparent truth predicate T is one that, paired with some quotation de-
vice 〈 〉, allows, for any wff A, for the claim T 〈A〉 to be substituted for A
or vice versa, in all extensional contexts in all arguments without change in
validity. This paper presents and defends a way to add a transparent truth
predicate to classical logic, a way that builds on our earlier work on vagueness
in [Cobreros et al., 2011b, Cobreros et al., 2011a]. A number of other authors
have sought a transparent truth predicate, and reached it by weakening classical
logic in various ways. The key advantage of our approach, from which a number
of other advantages will follow, lies in its keeping to classical logic.

In §2, we present some of the usual reasons for desiring a transparent truth
predicate. If you think transparency is a misguided desideratum, nothing in this
section will convince you otherwise. However, we think many philosophers who
would otherwise be interested in a transparent truth predicate have turned away
from it because of the importance they assign to preserving classical logic. Since
this paper will show that the two are compatible, we want to take the opportu-
nity to briefly rehearse the reasons for wanting a transparent truth predicate, as
well as to call attention to a few other key desiderata. §3 introduces our target
logic, which we will call STT, and elaborates on its relation to T -free classical
logic. §4 outlines a theory of paradoxical sentences based on STT. §5 considers
the advantages of our approach, comparing it to a number of other approaches
in the literature. Finally, §6 concludes.
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2 Some desiderata for truth

Theories of the truth predicate differ on whether the latter should be seen as a
‘thick’ and structured concept, or whether it rather is to be viewed as a ‘thin’
and simple concept. The view we wish to investigate in this paper belongs to
the latter family. On that view, the reason why truth should be transparent
is related to the function of the truth predicate in natural language, namely to
allow expressive generalizations ([Quine, 1970, Field, 2008, Beall, 2009]).

Truth is a generalization device insofar as it allows us to report that the
conjunction of a set of sentences, or their disjunction, holds, without having
to enumerate all sentences in the set, and even without having to know what
sentences are in the set. For instance, if I accept the sentence (1) ‘one of the
things John said was true’, and if it turns out that John said three things,
then I must accept that the condition expressed by the disjunction of the three
sentences said by John holds. For instance, if it turns out that (2) John said:
‘Mary is 30 years old; Mary has a blue car; Mary works in a bank’, I must
accept (3) ‘either Mary is 30 years old or Mary has a blue car, or Mary works
in a bank’.

This is so because the last sentence is exactly equivalent to (4) ‘either ‘Mary
is 30 years old’ is true, or ‘Mary has a blue car’ is true, or ‘Mary works in
a bank’ is true’. Thus, the equivalence between A and T 〈A〉 is what gets us
from (1) and (2) to (3) via (4): as Quine famously put it, truth behaves as a
disquotation device in the transition from (4) to (3). Conversely, it behaves as
a device of semantic ascent in the transition from (3) to (4): assuming (2) and
(3), in particular, we can only infer the generalization expressed in (1) via (4).

Theories of transparent truth postulate that the intersubstitutibility of A
with T 〈A〉 captures this double function of the concept of truth in natural
language, that is semantic ascent and disquotation. Although all theories of
transparent truth to date agree on this requirement, they still differ on two
further aspects of its articulation. The first concerns Tarski’s T -biconditionals:
A↔ T 〈A〉. While Tarski’s schema internalizes the very idea of transparency in
the object-language by means of a conditional, the theory of [Kripke, 1975], for
example, which is a theory of transparent truth, does not have the wherewithal
to make it valid (because, in fact, it does not make conditionals of the form
A → A valid in the first place). A second aspect concerns the interplay of the
truth predicate with the logical vocabulary. On top of transparency, another
natural requirement on truth is compositionality. Suppose John actually uttered
(5) ‘Mary has a blue car or Mary works in a bank’. By transparency, this
sentence is true iff Mary has a blue car or Mary works in a bank, that is,
again by transparency, iff ‘Mary has a blue car’ is true or ‘Mary works in a
bank’ is true. More generally, a theory of transparent truth can be said to be
compositional if it has the wherewithal to express generalizations such as ‘for
any sentences A and B, their disjunction is true iff A is true or B is true’. Again,
however, this desideratum is not necessarily entailed by transparency, because
it implies internalizing the effect of transparency within the theory.

In this paper, our aim is to propose a theory of transparent truth that can
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be made to satisfy these two extra requirements on the truth predicate. We will
offer a theory where truth is fully transparent, and in which the T -schema holds;
and we will show that it can be extended to capture the compositional behavior
of the truth predicate. (For this purpose, we will, as is customary, appeal
to arithmetic coding to handle the syntactic functions and quantification over
sentences that appear in the compositional principles.) The main challenge for
such a project is posed by the paradoxes, and we will show how our approach
handles them.

3 Trivalence and STT

A number of approaches to maintaining transparent truth have been tried in
response to the well-known paradoxes that inevitably arise. Many of these (eg
[Priest, 2006b, Kremer, 1988, Beall, 2009, Field, 2008]) are based in some way
on the work in [Kripke, 1975], and our approach is no different. As such, this
section first briefly reviews the so-called ‘Kripke construction’ and its upshots in
§3.1, before proceeding to present our logical framework in §3.2. (Although we
here present our logic model-theoretically, it is susceptible of a proof-theoretic
treatment as well; see [Ripley, 2011a] for a three-sided sequent calculus, or
[Ripley, 2011b] for a more traditional two-sided sequent calculus.)

3.1 Kripke-Kleene models

The Kripke construction starts from a classical model for a base language L
without any truth predicate, and provides a way to generate a model for the
language L+ that adds a transparent truth predicate T to L. For our purposes
here, the details of the construction are irrelevant, and we won’t present them;
what’s important are the models it yields, and their relation to the base-language
models. (For details of the construction, see [Kripke, 1975].)

Kripke’s base-language models are three-valued models for L using the set
{1, 12 , 0} of values, with Kleene’s strong valuation schema.1 According to this
schema, negation maps 1 to 0, 0 to 1, and 1

2 onto itself; conjunction ∧ is defined
as the minimum of the values of the conjuncts, and universal quantification ∀
as the minimum of values over all assignments that differ at most on the value
they assign to the variable bound by the quantifier [Kleene, 1952]. We can
define disjunction ∨, material conditional ⊃, material biconditional ≡ and an
existential quantifier ∃ as usual. We also include constants > and ⊥, which are
required on every model to take values 1 and 0 respectively.

The problems with truth mentioned above become acute only when the
language in question has some way of talking about itself. For the bulk of this
paper, we do this on the cheap, supposing that L includes a quote-name-forming

1Actually, Kripke considers the case where the value 1
2

is unused for anything in the base
language; these are then classical models. As he points out (his fn. 20), this restriction plays
no role, and we drop it here.
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operator 〈 〉 such that 〈A〉 is always a name of A, for any wff A of L+.2 (In
§3.4, we will be concerned to discuss a full theory of syntax, and will there
temporarily manage self-reference via Gödel coding.)

The models generated by the construction are also strong Kleene models,
with the additional feature that the value assigned to an atomic sentence T 〈A〉
is always the same as the value assigned to A itself. Call any model with these
features a KK model (for ‘Kleene-Kripke’).3

The models produced by this construction have two main features that make
them interesting for our purposes: they are conservative and they are transpar-
ent. Conservativeness first. For any model M of L, the model M+ of L+

produced by this construction agrees with M in its interpretations on the entire
language L. This includes cases in which M interprets L fully classically; in
these cases, so too will M+. All the usual paradoxical sentences can be formu-
lated, due to the presence of 〈 〉. For example, we might have a sentence λ that
is ¬T 〈λ〉. This is no impediment to the construction.4 Moreover, M can be very
rich indeed; its predicates and terms can be interpreted in any way whatsoever.
Since M+ agrees with M on L, the addition of T can be seen to have no effect
on the T -free fragment of the language.

The resulting models are also transparent: they assign A and T 〈A〉 the same
value, for every A. If we use KK models to define a notion of consequence, that
notion of consequence will feature transparent truth, for the simple reason that
no KK model can assign a formula A a different value from T 〈A〉. So long as
all connectives are value-functional, and validity itself depends only on values
taken by formulas on KK models, this result will hold.

There is an important question left to be answered, though: how are we
to define a notion of consequence on KK models? We can understand logical
consequence as usual, as absence of countermodel. The question then amounts
to: what is a countermodel to an argument? Classically, a countermodel to an
argument from premises Γ to conclusions ∆ is a model that assigns 1 to every
member of Γ and 0 to every member of ∆. There are multiple ways to extend
this notion to three-valued KK models.

Some of these ways result in relatively familiar logics. One way, resulting in
the logic we’ll call K3T (for K3 with transparent truth), is to take a counter-
model to be a model that assigns 1 to every member of Γ and some value less
than 1 to every member of ∆. Another way, resulting in the logic we’ll call LPT
(for LP with transparent truth), is to take a countermodel to be a model that
assigns some value greater than 0 to every member of Γ and 0 to every member

2To define a näıve satisfaction predicate, we should allow as well that the model features
some scheme for encoding finite sequences of members of the domain into members of the
domain. We won’t worry more about satisfaction here, as the relevant features of the Kripke
construction are already present with truth. Satisfaction poses no additional problems.

3KK models are thus [Kripke, 1975]’s fixed points. Every fixed point—minimal, maximal,
intrinsic, and otherwise—is a KK model. Every KK model is a Kripkean fixed point as well,
so long as we remember not to impose Kripke’s restriction to classical base models.

4Our presentation of L and L+ does not guarantee that there will be such a sentence; but
neither does it guarantee that there will not be. We assume, for our purposes in this paper,
that there will be a liar sentence, a Curry sentence, and any other sort of paradoxical sentence.
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of ∆. A third way, resulting in the logic we’ll call S3T (for S3 with transparent
truth), is to take a countermodel to be a model on which the minimum value
assigned to the Γs is greater than the maximum value assigned to the ∆s. (An
argument is S3T valid, then, iff it is both K3T valid and LPT valid.) Note that
all three of these definitions become equivalent to each other, and to the usual
classical definition, if we restrict ourselves to two-valued classical models.

These logics (particularly K3T and LPT) are familiar in the literature on
transparent truth, but they are not much advocated for. The main reason is
their relative weakness. All three are considerably weaker than classical logic,
but, more importantly, they lose many intuitively plausible and useful inference
forms. For example, K3T does not validate excluded middle (� A ∨ ¬A) or,
equivalently, identity (� A ⊃ A), LPT does not validate material modus ponens
(A,A ⊃ B � B), and S3T validates none of these. As a result, most authors
who work with variations on these logics (such as [Field, 2008, Priest, 2006b,
Beall, 2009]) vary them by adding extra connectives that recover some of the
strength these systems give up.5

Here, though, we will consider a different way of using KK models to define
a usably strong logic. We will add no extra connectives, staying fully within the
usual classical logical vocabulary. Instead, we will define validity differently.

3.2 The logic STT

The definition we consider stays very close to the familiar classical definition.
We say a model is an ST countermodel to an argument from premises Γ to
conclusions ∆ iff the model assigns 1 to every member of Γ and 0 to every
member of ∆. The logic STT (for ST with transparent truth) is the logic that
results from this definition over KK models.6

It is immediate that STT is stronger than both K3T and LPT: any STT
countermodel is automatically both a K3T and an LPT countermodel, but there
are K3T and LPT countermodels that are not STT countermodels.

In fact, STT is a strong logic indeed. First, consider its T -free fragment,
ST. ST is exactly classical logic. That is, an argument from premises Γ to
conclusions ∆ is ST valid iff it is classically valid. For proof, see [Ripley, 2011a];
the rough idea is this. Any two-valued classical counterexample to an argument
immediately provides an ST counterexample, since (by Kripke’s result) any
two-valued classical model can be extended to a KK model. Similarly, any ST
counterexample can be used to provide a classical counterexample: we build a

5On the other hand, defenders of S3T, as far as we can see, do not take this route. This is
odd, since S3T is weaker than either K3T or LPT, and so if anything needs even more help
than they do. It might be explained by the lack of well-developed theories of truth based
on S3T; [Kremer, 1988] and [Halbach and Horsten, 2006] both explore the logic, but neither
spends much time defending it.

6We have considered (in [Cobreros et al., 2011b]) a similar approach to providing a logic
for vagueness. There, our models were (implicitly) four-valued, but again, we took an ST
countermodel to be a model assigning 1 (the top value) to all the premises and 0 (the bottom
value) to all the conclusions. Related ideas are also explored in [Nait-Abdallah, 1995], among
other places.
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two-valued model for the T -free language by assigning to atomic wffs value 1
where the ST countermodel assigns value 1, 0 where it assigns 0, and 1 or 0
(it doesn’t matter which) where it assigns 1

2 . It can be shown that this always
results in a classical counterexample to the argument.

So ST is classical logic. This means that STT conservatively extends classical
logic: the only difference between classical logic and ST comes in arguments that
involve T . On its own, this might still leave us worried about STT’s strength:
STT preserves all classically-valid inferences in the T -free language, but what
does it have to say about the full language? The conservative extension result
assures us that A ∨ ¬A, for example, is valid when A includes no T . But what
about when A does include a T?

This is a sensible worry. But, as it turns out, STT preserves all classical
inferences: if Γ �CL ∆, then Γ? �STT ∆?, for any uniform substitution ? on
the full language. (For proof, see [Ripley, 2011a].) This ensures that arguments
valid in the base language retain their validity in the full (T -involving) language.
Thus, STT adds to classical logic in a benign way; it does not affect validity
in the T -free vocabulary, and it allows T -free validities to extend to the full
vocabulary.

Since STT is defined on KK models, it includes a fully transparent truth
predicate. So STT is a logic with some interesting features; it is a conservative
extension of classical logic with a transparent truth predicate, which allows
classical reasoning to be used over the full language. This also shows that STT
includes the unrestricted T -schema; since �CL A ≡ A, by the above results we
have �STT A ≡ A, and thus by transparency �STT A ≡ T 〈A〉. STT shows
that we can use KK models to define a logic for transparent truth that does not
suffer from the excessive weakness of K3T, LPT, and S3T, without adding any
extra connectives or other vocabulary.

Despite its considerable affinities with classical logic, however, STT holds
some surprises. First among these is that it is nontransitive. There are wffs A,
B, and C such that A �STT B and B �STT C, but A 6�STT C. For example,
consider a liar sentence λ equivalent to ¬T 〈λ〉. This sentence must take value 1

2
on every KK model; it can receive no other value compatible with the constraints
on ¬ and T . Since ST requires countermodels to go from 1 to 0, there is no ST
countermodel to the argument from p to λ; thus, p �STT λ. Similarly, there is
no ST countermodel to the argument from λ to q; λ �STT q. Nevertheless, it is
easy to find an ST countermodel to the argument from p to q; just assign 1 to
p and 0 to q. Therefore, p 6�STT q. STT consequence is not transitive.

This nontransitivity, though, is quite limited. In fact, it is restricted to
cases where paradoxical sentences rear their heads, in a quite particular way.
Let generalized transitivity be the move from Γ �STT A,∆ and Γ, A �STT ∆ to
Γ �STT ∆ (in a sequent-calculus presentation, generalized transitivity amounts
to the rule of cut). We know that generalized transitivity cannot hold in general;
the counterexample above shows that. But it will hold in very many cases. In
order to get a counterexample, we need Γ 6�STT ∆: there must be some KK
model on which every member of Γ takes value 1 and every member of ∆ takes
value 0. Call the set of all such models M; we know M is nonempty. Now, if
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A takes value 1 on any model in M, then Γ, A 6�STT ∆, so we do not have a
counterexample to generalized transitivity; similarly, if A takes value 0 on any
model in M, then Γ 6�STT A,∆, so we again do not have a counterexample.
It follows that, in any counterexample to generalized transitivity, A must take
value 1

2 on every model in M; that is, there must be no way to assign A value 1
or 0 while the Γs all get value 1 and the ∆s all get value 0. It is quick to verify
that this is a sufficient condition for counterexample as well.

So we have a counterexample to generalized transitivity—Γ �STT A,∆ and
Γ, A �STT ∆ but Γ 6�STT ∆—iff: there is some KK model that assigns 1 to
everything in Γ and 0 to everything in ∆, and every such model assigns 1

2 to A.
These are just the sentences that [Kripke, 1975] calls paradoxical: those that,
given certain assumptions (here embodied by Γ and ∆), cannot receive value 1
or 0. So there is a fully precise sense in which the only failures of transitivity
STT allows for arise in paradoxical cases. Outside the realm of what Kripke
calls the paradoxical, transitivity is perfectly safe.7 (If there were some reason
besides paradoxicality for a sentence to exhibit this sort of feature, then Kripke’s
explication of paradoxicality would be mistaken.)

3.3 Metainferences

Transitivity (and its generalized relative) are familiar metainferences: they are
principles under which a consequence relation might (or might not) be closed.
As STT shows, it’s entirely possible for a logic to retain all classically valid
arguments across its full vocabulary while still failing certain classical metain-
ferences. This immediately leads to two questions about STT, one technical
and one philosophical. First, just how many familiar metainferences does STT
fail? Second, how classical can STT be if it fails metainferences like transitivity?
Here, we answer each question in turn.

Generalized transitivity is not the only familiar metainference failed by
STT; there are two more related failures. First, one cannot conclude from
Γ �STT A ⊃ B,∆ and Γ �STT A,∆ that Γ �STT B,∆. For example, consider
the liar sentence λ, discussed above. As is quick to verify, we have �STT λ and
�STT λ ⊃ p, but 6�STT p. (Despite this, modus ponens itself, as a classically-
valid argument, is still valid: A,A ⊃ B �STT B.) We do not think this is an ad-
ditional cost, over and above the loss of transitivity; [Negri and von Plato, 2001,
p. 19] show that this metainference is equivalent to generalized transitivity, given
certain assumptions (which hold for STT).

A bit of care is also called for around the metainference of reductio. (Since
double-negation rules hold without restriction in STT, there is no difference
between “intuitionist” and “classical” forms—the care required is different.)
In one familiar form, reductio moves from Γ, A ` ¬A,∆ to Γ ` ¬A,∆; this
form holds for STT. In another familiar form, it moves from Γ, A ` ⊥,∆ to
Γ ` ¬A,∆; this form also holds for STT . In a third form, though, reductio
moves from Γ, A ` B ∧ ¬B,∆ to Γ ` ¬A,∆, and this form fails for STT. (For

7Thanks to Sam Butchart and Graham Priest for discussion here.
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example, p �STT λ ∧ ¬λ, but 6�STT ¬p.)
It is less apparent this is related to the loss of transitivity, but in fact it is.

In the presence of transitivity, one can conclude from Γ, A ` B ∧ ¬B,∆ and
B ∧ ¬B ` ¬A that Γ, A ` ¬A,∆, or from Γ, A ` B ∧ ¬B,∆ and B ∧ ¬B ` ⊥
that Γ, A ` ⊥,∆; one is then in a position to apply a form of reductio that holds
in STT. Without transitivity, though, there is no guarantee that one can get to
Γ, A ` ¬A,∆ or Γ, A ` ⊥,∆, and thus no guarantee that reductio can apply.

As far as loss of familiar and important metainferences goes, that’s about it.
(Of course new “failures” of unfamiliar and unimportant metainferences can be
generated ad infinitum by quick tweaks on the above.) Just to reassure, all the
following metainferences hold in STT (for proofs, see [Ripley, 2011a]):8

Monotonicity: If Γ �STT ∆, then Γ,Γ′ �STT ∆,∆′.

Structural contraction: If Γ, A,A �STT ∆, then Γ, A �STT ∆; and if Γ �STT

A,A,∆, then Γ �STT A,∆.

Proof by cases: If Γ, A �STT ∆ and Γ, B �STT ∆, then Γ, A ∨B �STT ∆.

Classical deduction theorem: Γ, A �STT B,∆ iff Γ �STT A ⊃ B,∆.

Conjoining premises, disjoining conclusions: Γ �STT ∆ iff Γ′ �STT ∆′,
where Γ′ comes from Γ by possibly conjoining some of its members, and
∆′ comes from ∆ by possibly disjoining some of its members.

It’s worth noting that many other approaches to truth do not retain all
these metainferences. For example, supervaluationist approaches based on
[Kripke, 1975], as discussed in [Field, 2008, Hyde, 1997], give up proof by
cases and disjoining conclusions, the nonclassical approaches in [Beall, 2009,
Field, 2008] give up the deduction theorem (in fact, they even give up the much
weaker version of the deduction theorem without side premises or conclusions),
and the contraction-free approach recommended in [Zardini, 2011] gives up not
just structural contraction, but proof by cases as well. Even the classical theory
FS described in [Friedman and Sheard, 1987] gives up the deduction theorem.
What’s more, these failures are not incidental to these approaches; with the
metainferences imposed the approaches simply do not work. That is, they triv-
ialize, yielding the result that Γ � ∆ for any Γ,∆. (For further discussion of
these theories, see §5.)

This is enough to give a sense of the situation with familiar metainferences
in STT. The question remains: is it appropriate to call STT classical, given that
it fails some metainferences that hold of T -free classical logic? This is in some
sense a purely terminological question, but there is a philosophical core to it.
We often think of logics as involving both valid arguments and metainferences;
by losing metainferences, it seems we weaken our logic. Even if STT keeps all
classically-valid arguments, if it loses some metainferences, then it might seem

8Sequent calculi are a way to present a logic almost entirely through metainferences, and
[Ripley, 2011b] shows that STT retains all the rules of usual (cut-free) classical sequent calculi
as well.
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to have weakened some aspect of classical logic, and this could be enough to
put it in with other nonclassical approaches to paradox.

Even if this claim were right, it would not be too much trouble; it’s not a bad
crowd to be lumped in with. Nonclassical approaches to paradox include some of
the subtlest, most valuable, and most plausible approaches. However, the claim
is not right: one does not weaken a logic simply by losing a metainference.

We will explore this first in a specific case and then in some generality. First,
the specifics. Consider the propositional modal logics S4 and S5. It is clear, we
take it, that S5 is a strengthening of S4; indeed, if S5 is not a strengthening of
S4, then we have no idea what use the notion of strengthening might be put to.
Nonetheless, S5 fails some metainferences that S4 obeys. For example, consider
the metainference: If ` ♦p ⊃ �♦p, then ` ⊥. S4’s consequence relation is closed
under this rule, since 6`S4 ♦p ⊃ �♦p. However, S5’s consequence relation is not,
since `S5 ♦p ⊃ �♦p but 6`S5 ⊥.

This is not a coincidence; facts like this hold under very minimal conditions.
Let the universal consequence relation be the relation `U that holds between
every possible combination of premises and conclusions, and suppose we have
two consequence relations `1 and `2 such that `1 ⊂ `2 ⊂ `U (note that these
are strict inclusions). Then `2 fails some metainferences that `1 satisfies.

Here’s why: let Γ,∆ fall in the difference between `2 and `1; that is, choose
Γ,∆ so that Γ `2 ∆ but Γ 6`1 ∆. (By the strict inclusion of `1 in `2, there will
be some such.) Similarly, let Γ′,∆′ fall in the difference between `U and `2.
Then `1 satisfies, but `2 does not, the metainference: if Γ ` ∆, then Γ′ ` ∆′.
We want to stress that these are very minimal conditions indeed; they arise just
about every time a logic is extended at all. It thus makes no sense to think of
losing a metainference as weakening a logic—it’s impossible to avoid, so long as
we don’t adopt the universal consequence relation.9

In other words, if STT gives up something important about T -free classical
logic, it is not because it fails some metainferences that hold for T -free classical
logic; any way at all of extending classical logic (short of moving to the universal
consequence relation) does that. It must rather be because there is something
important about the particular metainferences in question. In the case of STT,
we reckon the focus should rest on (generalized) transitivity.

Again we must be careful to set terminological questions aside (although it
is interesting to notice how vague the concept of classical logic turns out to be).
Even if one uses the word ‘classical’ so as to exclude STT on the grounds of its
nontransitivity, it cannot be denied that STT allows its users to recognize that
every classically-valid argument is valid. We take this to be the main advantage
conferred by sticking to classical logic, and so STT is classical enough for us.

9The S4/S5 example above fits this mold; so too does the following example. Classical
predicate logic fails some metainferences that hold in classical propositional logic; for example,
if ∀xPx ` Pa, then p ` q. It would be a serious abuse of terminology to hold that classical
predicate logic is not classical for this reason. (To be able to make a direct comparison, we
assume that both logics share the same language; then classical propositional logic simply
treats things like ∀xPx as atoms.)
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3.4 Coding, induction, and compositionality

This far, we’ve been working with a simple quote-name approach, on which 〈A〉
names the wff A, and there’s nothing more to it. However, an ideal theory of
truth should include more than this: we want a full theory of syntax. In this
subsection, we’ll discuss how to achieve this within STT. We use Peano arith-
metic and Gödel coding to get the job done; for details, see eg [Boolos, 1995].
We’ll write pAq for the code of a piece of vocabulary A. We use a predicate
sent(x) true of all and only the codes of sentences, a predicate var(x) true
of all and only the codes of variables, and functions ¬̇, ∧̇, ∀̇, and Ṫ such that
for any formulas A, B, and variable x: ¬̇pAq = p¬Aq, pAq∧̇pBq = pA ∧ Bq,
∀̇pvqpAq = p∀vAq, and ṪpAq = pTpAqq. Such predicates and functions are
definable from the vocabulary of PA. (Corresponding functions for ∨, ⊃, ≡,
and ∃ can also be defined, and will work the same, mutatis mutandis. For this
subsection only, we forget all about quote-names.)

In this framework, we can express the so-called ‘compositional principles’:
principles like ∀x∀y(sent(x∧̇y) ⊃ (T (x∧̇y) ≡ (Tx ∧ Ty))). These seem to
express important claims about truth: in this case, that a conjunction of any
two sentences is true iff the sentences themselves are both true. Each connective
and quantifier gives rise to a compositional principle. The others, in the present
vocabulary, are ∀x(sent(x) ⊃ (T ¬̇x ≡ ¬Tx)) and ∀x∀y(sent(∀̇xy) ⊃ (T ∀̇xy ≡
∀t(y(t/x)))), where if y = pAq and x = pvq, y(t/x) is the code of the formula
that results from substituting t for v everywhere in A.

Starting from the standard classical model M of (T -free) PA, we can again
use Kripke’s result to show that there are models extending M with a truth
predicate T such that for any formula A, TpAq gets the same value on M that
A does. Call these models KKP models (for ‘Kleene-Kripke-Peano’), and define
a new notion �STTPA of consequence analogously to �STT , but restricted to KKP
models.

Clearly, every theorem of T -free PA will receive value 1 in every KKP model.
But with T in the language, there are new instances of PA’s induction axiom
schema formulable. Not all of these can take value 1, but they all do take value
greater than 0 on every KKP model.10 Thus, every instance I of the induction
schema, even extended to those instances involving T , is such that �STTPA I; they
are all theorems.

Moreover, the compositionality principles alluded to above are also theorems
of �STTPA . It is shown in [Halbach, 2011] that the system there named PKF is
sound over KKP models. PKF includes the turnstile versions of the composi-
tionality principles; for example, it includes sent(x∧̇y), T (x∧̇y) ` Tx ∧ Ty. It
can be shown that 1) if these principles hold in PKF, then they hold in STTPA,
and 2) if these principles hold in turnstile form in STTPA, then they hold in
quantified theorem form as well (due to STTPA’s obeying a deduction theorem
and allowing for the sequent metainference introducing ∀ on the right). As a

10The instances are all of the form (A(0) ∧ ∀x(A(x) ⊃ A(x+ 1))) ⊃ ∀xA(x). The only way
for this sentence to get value 0 on a KKP model M is for A(0) ∧ ∀x(A(x) ⊃ A(x+ 1)) to get
value 1 and ∀xA(x) to get value 0. This cannot happen, given the constraints on ⊃ and ∀.
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result, STT, when restricted to fixed points over the standard model of PA,
allowing it to express its own syntax, automatically captures the compositional
principles that some other theories of truth struggle with.

For the remainder of the paper, we return to the quote-name approach,
for simplicity; but we will sometimes recall these nice features of the system
including arithmetic.

4 Paradoxes

4.1 Paradoxical arguments

If every inference form valid in classical logic is STT-valid as well, and STT
supports a transparent truth predicate, then where does the liar argument go
wrong? Here’s one version of the argument, as a proof by cases, where λ is the
liar sentence ¬T 〈λ〉:

>
LEM

T 〈λ〉 ∨ ¬T 〈λ〉

[T 〈λ〉]1
TE

λ
Def. λ

¬T 〈λ〉
∧I

T 〈λ〉 ∧ ¬T 〈λ〉

[¬T 〈λ〉]1
Def. λ

λ
T I

T 〈λ〉
∧I

T 〈λ〉 ∧ ¬T 〈λ〉
∨E, 1

T 〈λ〉 ∧ ¬T 〈λ〉
Explosion

⊥

If indeed > �STT ⊥, something has gone very wrong: this would tell us that
every model such that 1 = 1 is such that 0 > 0; in other words, it would tell us
that there are no models, and so no countermodels, so Γ �STT ∆ for every Γ,∆.
We know, since STT conservatively extends classical logic, that this is not the
case, but how is it avoided?

Every step in the above proof except the T -steps is STT-valid, and the T -
steps are STT-valid as well. (After all, A �STT A, so transparency guarantees
that A �STT T 〈A〉 and T 〈A〉 �STT A.) So every step is STT-valid. It’s the
attempt to chain them together that’s gone wrong.

Let’s say that a model strictly satisfies a sentence when it assigns value
1 to that sentence, and that it tolerantly satisfies a sentence when it assigns
some value greater than 0 to that sentence. Remember, �STT imposes weaker
conditions on its conclusions than on its premises: when all the premises of
an STT -valid argument are strictly satisfied, some of its conclusions must be
tolerantly satisfied.

For most of the above argument, that feature doesn’t particularly matter,
but there are two steps where it does: the step from > to T 〈λ〉∨¬T 〈λ〉, and the
step from T 〈λ〉 ∧ ¬T 〈λ〉 to ⊥. The excluded middle step only guarantees that
T 〈λ〉 ∨ ¬T 〈λ〉 is tolerantly satisfied, not strictly. From here, we can (in fact)
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safely conclude that T 〈λ〉 ∧ ¬T 〈λ〉 is tolerantly satisfied.11 But explosion needs
strictly satisfied premises to do its work: it is STT-valid, but not LPT-valid. So
although explosion is valid, its premises are not satisfied enough for that validity
to matter.

A similar approach works for the Curry paradox, a sentence κ equivalent to
T 〈κ〉 ⊃ ⊥. Consider the following proof:

[T 〈κ〉]1
TE κ

Def. κ
T 〈κ〉 ⊃ ⊥

⊃E
⊥⊃I, 1

T 〈κ〉 ⊃ ⊥
Def. κ κ

T I
T 〈κ〉

⊃E
⊥

Again, every step is STT-valid, but the proof seems to show that �STT ⊥. We
know, since STT conservatively extends classical logic, that this is not the case,
so the trouble must have again come from linking the steps together. Here, the
trick is pulled between the ⊃-intro and the final modus ponens. By deriving ⊥
from T 〈κ〉, we can validly conclude T 〈κ〉 ⊃ ⊥, but this is guaranteed to hold
only tolerantly. Modus ponens, on the other hand, requires strictly satisfied
premises; like explosion, it is STT-valid but not LPT-valid.12

Since STT is a conservative extension of classical logic, we know that there
is no way an as-yet-undiscovered paradox will trivialize it. All formulable para-
doxes13 will have treatments like the liar and Curry above; somewhere in the
derivation of the troublesome conclusion, if every individual step is valid, there
will be an illicit use of transitivity. Something will be demonstrated only toler-
antly and drawn on as though it held strictly.14

4.2 The status of paradoxical sentences

So much for logical consequence. A natural next question, though, is what
status paradoxical sentences have on our view. Consider again the liar λ. It is
both a theorem (�STT λ) and refutable (λ �STT ). Similarly, the claim that it’s
true is both a theorem and refutable, as is the claim that it’s false. What do
we say about such sentences, then?

11This is so because all the inferences that take place between T 〈λ〉∨¬T 〈λ〉 and T 〈λ〉∧¬T 〈λ〉
are LPT-valid. LPT-valid inferences can always safely be chained on to the end of STT-valid
inferences.

12Interestingly, it requires only one strictly satisfied premise, and it doesn’t matter which;
either the conditional or the antecedent will do. But if both are only tolerantly satisfied, no
dice.

13An example of an (as-yet-) unformulable paradox: we include no treatment here of definite
descriptions, and so cannot formulate Berry’s paradox. We will treat this (and others) in future
work.

14For example, in the Dean/Nixon case explored in [Kripke, 1975], if the circumstances are
such as to render the case paradoxical, it will emerge that both Dean’s and Nixon’s utterances
can be demonstrated to hold only tolerantly.
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Here, we see two options that directly present themselves. Rather than argue
for one in particular, we will briefly present them both, without much in the
way of evaluation. Which is a better choice, or whether there is some third
choice better than both, are issues we leave for future work.

The first approach works at the level of pragmatics. On this approach, what
can be said about paradoxical sentences depends on how the saying is being
done. As in [Ripley, 2011b], we distinguish two forms of assertion, strict and
tolerant. Strictly, the liar and other paradoxical sentences cannot be asserted;
tolerantly, they can. The same goes for their negations. Since the truth predi-
cate is fully intersubstitutable, if we speak strictly we do not claim either that
these sentences are true or that they are not true; if we speak tolerantly, we
happily claim both.

It is natural to see the values in a model theory as intimately tied to (ide-
alized) assertibility; this is so whether one thinks that assertibility is prior to
semantic value or vice versa (or neither). More familiar approaches to three-
valued models invoke a notion of “designated value”; this amounts to imposing a
two-way division over the top: either value-1 sentences are assertible and others
are not, or else value-0 sentences are not assertible and others are. But there
is no way to understand an STT-based approach in terms of designated values,
and we do not impose this two-way division.15

Instead, we can see a direct connection between model-theoretic value and
assertibility. A sentence is either strictly assertible, tolerantly but not strictly
assertible, or not assertible at all. We do not allow for sentences that are strictly
but not tolerantly assertible; strict assertion, on this picture, is a (strictly)
stronger speech act than tolerant assertion. Paradoxical sentences reveal the
difference between strict and tolerant assertion: they are tolerantly but not
strictly assertible.

The other approach works at the level of meaning. Rather than supposing
that there are two distinct speech acts of assertion, this approach supposes
that each sentence has two distinct meanings (or two distinct aspects of its
meaning, if you like) that can be asserted: its strict meaning and its tolerant
meaning. Understanding meanings as dividing the space of models in two, we
can understand a sentence’s strict meaning as one drawing a division between
those models on which the sentence takes value 1 and those on which it takes
some value less than 1, and we can understand a sentence’s tolerant meaning as
one drawing a division between those models on which the sentence takes some
value greater than 0 and those on which it takes value 0.

This is the approach we explored for vague language in
[Cobreros et al., 2011b]. Again, strict and tolerant are related by strength:
every sentence’s strict meaning is at least as strong as its tolerant meaning.
Paradoxical sentences, on this picture, reveal the difference between strict and
tolerant meaning; they are those sentences whose tolerant meanings are true
but whose strict meanings are not.16

15As [Dunn and Hardegree, 2001] show, every logic based on designated values in the usual
way is transitive.

16If we like, we can call sentences whose tolerant meanings are true “tolerantly true” and
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Unlike the pragmatic approach, this approach must immediately grapple
with apparent revenge problems in the present context. For example, the sen-
tence ‘This sentence’s strict meaning is not true’ would seem to function as a
liar. We are not so worried about this possibility. One can try to argue as
follows: “If its strict meaning is true, then its strict meaning is not true (since
that’s what it says); so its strict meaning is not true. But then what its strict
meaning says is the case, so its strict meaning is also true. Its strict meaning,
then, is both true and not true. But then everything follows.” This reasoning,
though, assumes transitivity throughout, and we’ve given a theory on which
transitivity cannot be assumed, particularly in reasoning involving truth. What
the reasoning shows is that, even when an appropriate treatment of strict and
tolerant meaning is brought into the language itself, there can still be failures
of transitivity due to paradoxes.

As far as we can see, then, there are at least two ways to understand the
status paradoxical sentences have on an STT-based theory like the one we’ve
advanced here. Both ways take paradoxical sentences to fall in between strict
and tolerant, but one way takes the distinction between strict and tolerant to
be a pragmatic distinction, and the other to be a distinction in meaning. On
the second approach, revenge troubles might seem to loom, but they, just like
the original paradoxes, depend on transitivity, which we expect to fail when
paradoxes are around.

5 Comparisons

This section serves to locate STT as a formal approach to truth by comparing
it and contrasting it to some of its relatives in the literature. One key differ-
ence between STT and most other approaches is clear: transitivity. Almost all
existing approaches to truth are based on transitive logics (but see §5.4), while
STT, quite crucially, is not. The other main distinction is STT’s combination
of transparency and classicality; no other theory combines these features.

5.1 FS

The first relative of STT we should look to is FS, or the Friedman-Sheard
theory of truth. (This theory is presented in [Friedman and Sheard, 1987] and
discussed in eg [Halbach, 2011, Ch. 14].) It is typically presented axiomatically,
by adding a variety of axioms to Peano Arithmetic (PA), along with a pair of
rules:

sentences whose strict meanings are true “strictly true”, but one should not assume par-
ticular truth-table-based accounts of these predicates. For instance, it cannot be that ‘A
is strictly true’ takes value 1 iff A takes value 1, and takes value 0 otherwise. This would
impose inconsistent requirements on our models, due to the existence of a sentence claim-
ing its own strict untruth. Note that similar restrictions must be required by any approach
based on Kripke’s construction, and can be understood in a number of different ways (as in
[Priest, 2006a, Field, 2008]).
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A
Nec:

T 〈A〉
T 〈A〉

Co-nec:
A

Crucially, FS includes neither A ⊃ T 〈A〉 nor T 〈A〉 ⊃ A as theorems, and
neither can be added, on pain of triviality; it thus does not validate the
T -schema in either direction, one major difference with STT. (The same
goes for many other classically-minded theories of truth, including those in
[Gupta and Belnap, 1993, Maudlin, 2004].) Since A ⊃ A is valid in the FS
theory, these cases provide counterexamples to transparency as well, another
difference with STT.

FS is usually considered to be a theory of truth within classical logic. We
think this is right, but want to call attention to what is involved. First, ev-
ery classically valid argument remains valid in FS, and this feature extends to
arguments involving truth vocabulary; these are features FS shares with STT.
Another feature FS shares with STT is the failure of familiar and useful metain-
ferences. For STT, transitivity goes; for FS, it is the deduction theorem that
must fail. With a deduction theorem, we could derive A ⊃ T 〈A〉 from the rule
Nec, or T 〈A〉 ⊃ A from the rule Co-nec, and either would immediately trivial-
ize the system. The sense in which FS is classical is thus a sense that allows
for failure of familiar and useful metainferential properties like the deduction
theorem.

FS and STT are thus equally examples of classical approaches to truth that
achieve some measure of control over paradoxes by allowing for the failure of
certain metainferences. The existence of STT undermines any attempt to de-
fend FS’s failure to support the T -schema and transparency by insisting that no
classical approach can support these principles. STT does support these prin-
ciples, and, as above, it is as classical as FS. In addition, STT, like FS, includes
the compositional principles for truth, if we restrict our attention to fixed points
over the standard model of PA, as we pointed out in §3.4.

The final difference between FS and STT that we’ll mention here: FS is
ω-inconsistent, and can have no standard models. STT, on the other hand, is
shown to have standard models by the Kripke construction.17

5.2 Extra-arrow theories

One subfamily of STT’s nonclassical relatives includes the logics of
[Priest, 2006b, Brady, 2006, Field, 2008], and [Beall, 2009]. While these logics
differ from each other in various ways, their differences from STT are more uni-
form; here, we’ll discuss them together, paying more attention to their common
features than to what differentiates them.

17STTPA, which contains the compositional principles, PA, and a transparent truth pred-
icate, more than satisfies the conditions for the “negative result” in [McGee, 1985], showing
that any system meeting weaker conditions than these must be ω-inconsistent. (It is this
result that shows FS to be ω-inconsistent.) Nonetheless, the result does not apply here, as
McGee’s argument depends on assuming transitivity.
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Like STT and unlike FS, most of these logics support full transparency.18 All
four logics include, in addition to the defined conditional ⊃, a new conditional
→, and they all validate the T -schema, at least in the form A↔ T 〈A〉. Priest’s
and Beall’s systems in addition validate the T -schema in ≡ form; Brady’s and
Field’s do not.

Unlike FS, these theories of truth involve genuinely nonclassical logics;
Priest’s and Beall’s logics are extensions of LPT, Field’s is an extension of
K3T, and Brady’s, as a relevant logic, is an extension of the logic FDE (see
[Anderson and Belnap, 1975] or [Priest, 2008] for details of FDE). The most
apparent nonclassicalities involve negation; none of the logics validates both ex-
cluded middle (A ` B∨¬B) and explosion (A∧¬A ` B), and Brady’s validates
neither. The situation around reductio is also delicate. While Priest’s and
Beall’s logics support reductio in two of the above-discussed forms—allowing
passage from Γ, A ` ¬A,∆ or from Γ, A ` ⊥,∆ to Γ ` ¬A,∆—none of
these logics support reductio in a different form—none allow passage from
Γ, A ` B∧¬B,∆ to Γ ` ¬A,∆. (The usual equivalence between these forms de-
pends inter alia on explosion, which neither Priest’s nor Beall’s logic validates.)
In contrast, STT supports both excluded middle and explosion, as well as the
first two forms of reductio. As we mentioned in §3.3, it also does not support
the third form of reductio—there, STT matches these logics, albeit for different
reasons.

The two conditionals in these logics (⊃ and→) approximate the classical⊃ in
different ways. Because of the failures of excluded middle and explosion, none of
these logics includes both of ⊃-identity (` A ⊃ A) and ⊃-modus ponens (A,A ⊃
B ` B). This is the usual reason for adding →; all four logics validate both
→-identity and →-modus ponens. A difference in the other direction between
the conditionals occurs over the rule of (conditional, rather than structural)
contraction: for all four logics, A ⊃ (A ⊃ B) ` A ⊃ B, but A → (A →
B) 6` A → B. In fact, adding this last validity to any of the logics would
trivialize it immediately. The same goes for the arrow form of→-modus ponens
(` (A ∧ (A→ B))→ B); this too cannot be added to any of these logics. As a
result, none of them can enjoy a deduction theorem for →. In addition, none of
them enjoys both directions of the deduction theorem for ⊃ (even in the weak
form: A ` B iff ` A ⊃ B); Priest, Brady, and Beall all fail the right-to-left
direction, while Brady and Field fail the left-to-right direction.

By contrast, STT’s single conditional ⊃ validates all the principles discussed
here: identity, modus ponens, arrow form modus ponens, contraction, and a full
deduction theorem (even in the strong form: Γ, A ` B,∆ iff Γ ` A ⊃ B,∆).
So these theories, while (at least potentially) sharing STT’s transparency, share
little of its classicality. A number of important inferences and metainferences
around negation and the conditional are lost.

When it comes to offering a theory of paradoxical sentences, however, there
is more affinity between STT and these extra-arrow theories. Consider the liar

18Priest is the only exception, for philosophical rather than technical reasons; transparency
can be added to Priest’s system without triviality.
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sentence λ. Priest and Beall offer theories on which both λ and ¬λ are to
be asserted, and neither is to be denied. If assertion is understood tolerantly
and denial strictly, this is our approach as well. Dually, Field offers a theory on
which both λ and ¬λ are to be denied, and neither is to be asserted. If assertion
is understood strictly and denial tolerantly, this is our approach as well.19

5.3 Contraction-free

Recently, [Zardini, 2011] has advanced a theory of transparent truth based on
restricting the structural rules of contraction (the rules that allow one to move
from Γ, A,A ` ∆ to Γ, A ` ∆, and from Γ ` A,A,∆ to Γ ` A,∆), and
[Beall and Murzi, 2011] has also offered some arguments in favor of such a view.

Amongst nonclassical approaches, this is probably the closest to STT. Zar-
dini’s logic IKTω, for example, retains a deduction theorem, excluded middle,
explosion, and weakened forms of reductio. In addition, both IKTω and STT
have as a theorem every instance of the claim that modus ponens is truth-
preserving: ` (T 〈A ⊃ B〉 ∧ T 〈A〉) ⊃ T 〈B〉.20

There are some notable differences, however. First, IKTω is weaker than
classical logic, even on some very basic arguments: for example, A 6�IKTω

A∧A,
and A∨A 6�IKTω

A. This is crucial; adding these principles would trivialize the
logic. A number of familiar metainferences also fall by the wayside; for example,
both reductio and proof by cases hold only in a weakened form, since the full
forms of these metainferences would bring enough contraction into the system
to trivialize it. Although the loss of classical principles is perhaps less drastic
than in the case of many other nonclassical systems, it is still very much a part
of Zardini’s approach.

Second, while IKTω is known to be nontrivial, its relation to models of PA
has not yet been explored. This leaves in question the status of the compo-
sitional principles mentioned in §5.1. STT, by building on the well-explored
Kripke construction, can provide these principles.

5.4 Nontransitive

Finally, we mention the relation between STT and the nontransitive system
advanced in [Weir, 2005] to address paradoxes of truth. As with the contraction-
free systems, this system comes quite close to classical logic. In fact, we think
it’s the closest to classical of the nonclassical systems we consider here. However,
it still exhibits some nonclassical, and we think odd, behavior.

19There is also a real connection “under the hood”. All four extra-arrow logics are proved
nontrivial by their authors via a model construction whose prototype is the construction in
[Brady, 1989]; this construction involves a transfinite series of what are essentially Kripke
fixed-point constructions. The Kripke construction, in all cases, handles T completely, as it
does for us in §3.1; the transfinite series is only necessary to handle the extra arrow.

20STTPA also includes as a theorem the quantified version of this principle: ∀x∀y(form(x)∧
form(y) ⊃ ((T (x⊃̇y) ∧ Tx) ⊃ Ty)). IKTω ’s relation to arithmetic, and its take on this
quantified form of the principle, is still unknown.
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A number of crucial arguments, such as modus ponens, hold in Weir’s logic
only under restricted conditions. In addition, the theoremhood cannot be de-
fined in the usual way (as consequences of the empty set of premises); rather,
Weir says, “The notion of theoremhood. . . has to be: φ is a theorem iff for some
A,B, we have that A→ A,B → B ` φ is provable” (246). (Here,→ is a special
conditional in Weir’s logic, not ⊃.)

If one is willing, with Weir, to give up transitivity in the pursuit of truth,
STT shows that there is no need to make these further modifications. It’s
possible, as we’ve shown here, to give up transitivity within classical logic, and
thus retain unrestricted modus ponens, the usual notion of theoremhood, and
other classical features.

6 Conclusion

This paper has presented and explored a logical framework, STT, for adding
transparent truth to classical logic. By building on the familiar Kripke con-
struction, but using an unfamiliar definition of countermodel, and so of logical
consequence, STT allows us both to retain every classically-valid argument and
to allow for a fully transparent truth predicate. This is possible because some
familiar metainferences, crucially including transitivity, fail for STT.

It’s been claimed [Leitgeb, 2007] that the following eight desiderata for a
theory of truth are not jointly satisfiable: 1) that it include a truth predicate
and a theory of syntax; 2) that, when added to a mathematical or empirical
theory, it allow for that theory to be proven true; 3) that it be type-free; 4)
that it include the full T -schema; 5) that it be compositional; 6) that it allow
for standard interpretations; 7) that its outer and inner logics coincide (that is,
that A entails B iff T 〈A〉 entails T 〈B〉); and 8) that its logic be classical.

When one considers STTPA (as in §3.4), it turns out that all eight of these
desiderata are satisfied. (Arithmetic is important here to get a theory of syntax,
for desideratum 1, and to formulate the compositional principles, for desidera-
tum 5.) The argument that they cannot be jointly satisfied turns crucially on
the assumption of transitivity, but transitivity is not among the eight desider-
ata, nor does it follow from them. (STT shows that a logic can be classical (and
thus satisfy desideratum 8) without being transitive.) As Leitgeb says, “In the
best of all (epistemically) possible worlds, some theory of truth would satisfy
all of these norms at the same time” (283). We might yet live there, unless
transitivity is seen as an additional desideratum. However, as we’ve tried to
argue, the loss of transitivity is minimally disruptive; transitivity continues to
hold in nonparadoxical cases.

There is much left to do. We have not here explored an STT-based
theory’s prospects for avoiding revenge paradoxes, or description-based para-
doxes like Berry’s. We also have not drawn very many connections be-
tween this treatment of truth and our treatments of vague predicates in
[Cobreros et al., 2011b, Cobreros et al., 2011a], although the approaches are in-
timately related. Although we’ve sketched some relations between our approach
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and other approaches in the literature, we have not given the issue the detailed
exploration it deserves. These issues await future research. For now, we are con-
tent to put STT on the table as suggesting a promising avenue for approaching
the paradoxes.
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