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1 Communication as coordination problem

Suppose two individuals agreed to meet each other tonight at 10.00 o’clock in
Amsterdam, but forgot to agree on a place (and don’t have the chance anymore
to make an agreement). The two are now facing a coordination problem: only if
they make a ‘correlated’ decision, they will both end up at the same place and
meet each other as desired.

Schelling (1960) distinguishes two ways to solve such coordination problems:
convention and salience. A coordination problem is solved by convention if the
participants were engaged in similar coordination problems before, and have
formed the habit, or convention, to solve these problems in a particular way.
Both participants see the overwhelming similarity between the previous coordi-
nation problems and the current one, and, either out of habit, or because they
expect that the other participant will behave similarly as before, they behave
similarly as they did in these previous encounters. A coordination problem is
solved by salience if the participants do not expect that the problem can, or
will, be solved by habit or convention, but have reason to assume that the other
participant will behave in a certain way, because one kind of behavior is most
‘obvious’.!

David Lewis (1969) had the insight that we can think of successful com-
munication as a way to successfully solve the coordination problem of how to
transfer information. The problem involves both the speaker and the hearer:
the speaker S has to decide which signal to send to transfer the intended infor-
mation, and the hearer H has to interpret the signal in the way as intended by
the speaker in order for the communicative act to be successful. As is the case of
all coordination problems, expectations are crucial: the speaker’s decision which
signal to send will be based on how she expects the hearer H will interpret the
signals she considers, and the hearer’s decision will be based on what he expects
the speaker could have meant.? So how can the participants in a conversation

*We would like to thank the reviewers for their critical comments and useful suggestions.

LOf course, convention or precedence, gives rise to salience, and can be thought of as
a special case. With Clark (1996) and others, however, we will here assume the intuitive
distinction between solving a game by convention and by salience.

20f course, these (first-order) expectations about what the other will do are based on the
(higher-order) expectations of both participants of the conversation of the other’s expectation
about one’s own behavior, and so on. In this paper we won’t go through the way the expec-



have correct expectations about the communicative behavior of their partners?

Just as in the coordination games studied by Schelling, also here the two ways
of solving the problem are either by convention, or by salience. For both ways,
expectations are crucial. The communication problem is solved by convention
if the speaker ‘encodes’ her communicative intention by using a signal which
has been used many times before (or at least is composed out of signals used
many times before) and which has received the interpretation the speaker now
wants to communicate. The speaker uses the symbol on the expectation that
the hearer will interpret it in the same way as before, while the hearer interprets
it on the expectation that the speaker intended to communicate the same as on
previous occasions when she used the signal. Of course, linguistic conventions
are much more complicated than this picture suggests, but, essentially, this is
the idea.

The communication problem is solved by salience if the conventional mean-
ing (if any) of the signal used by the speaker underspecifies its actual intended
interpretation, or in case the speaker wants to implicitly convey (by conver-
sational implicature) something on top, or instead, of what is conventionally
communicated by the use of the sentence. For such cases, expectations are even
more important: speaker and hearer have to agree on what would be the most
obvious interpretation of the signal in this context.

The traditional emphasis of linguistics has been on conventional or rule-
governed communicative behavior: syntax and (lexical and compositional) se-
mantics. However, for pragmatics, the theory of language use, it is the concept
of salience that is of crucial importance.

To a large extent, the notion of salience is a psychological notion that largely
has ‘escaped’ game theoretical analysis.? It crucially involves expectations, and
(at least traditional) game theory has nearly nothing to say about how these
expectations are formed. However, we can abstract away from the particular
expectations that participants of a conversation have, and use game theoretical
reasoning to make predictions concerning their expected behavior in certain
kinds of situations. That is what we will do in this paper.

2 Games, expectations, and communication

2.1 Expectations and equilibrium selection

Coordination problems can obviously be thought of in a game theoretical way.*
Suppose Row and Column have to make their respective decisions independently
of one another. Row has to decide between performing R; or Ry and Column has
C1 and (5 as his alternative actions. In the simplest coordination games, both
Row and Column are equally happy when they coordinate on either (R, C1) or
on (Ra, Cs). Such a game can be described in terms of the following payoff-table:

tations about the other’s behavior are formed, but just stick to the first-order expectations.
3But see Asher and William (this volume) for an interesting exception.
4Though it was the insight of Schelling (1960) that the analysis of how to solve such
problems is more complicated, and thus more interesting, than previously assumed.



c, Oy
Game 1 : Ry | 1,1 0,0
Ry | 0,0 1,1

The action pairs on which they want to coordinate are both Nash-equilibria
of the game, but their problem is on which one they should coordinate. Given
that they have to decide independently of one another, their chosen action will
depend on their expectations about what the other will do. In case the payoffs
are equal, as in game 1, Row, for instance, will choose R; just in case she
expects, or takes it to be more likely, that Column will play C;. For game 1,
the choice of how to perform depends only on the players’ expectations on what
the other will do. But this is just because here both equilibria have the same
payoff (for both players). In general, different equilibria can give rise to different
payoffs, and both players will choose by maximizing their expected utilities.
These expected utilities involve both payoffs and the probabilities that a player
assigns to the different actions that the other player will perform. Suppose that
the probability function Pg represents Row’s expectations about what Column
will perform, i.e., Pr(C;) will represent the probability with which Row thinks
Column will perform action C;. The expected utility held by Row to play Rj,
EUg(Ry), will then be Pr(C1) x Ur(R1,C1) + Pr(Cs) x Ur(Ry,C5). It is easy
to see that the expected utility of R; is higher than the expected utility of Ra,
EUgr(R;) > EUg(R2), just in case Row thinks it is more likely that Column
will play C; than Cy, i.e. when Pgr(C7) > Pr(C5). Obviously, something similar
holds for Column.

Things are a little bit more complicated when the payoffs of the different
equilibria are not the same. Consider, for instance, the following coordination
problems:

Cl 02 CVl C12
Game 2:| Ry | 2,2 | 0,0 Game 3:| R; | 8,8 | 0,0
Ry | 0,0 | 1,1 Ry | 0,0 | 1,1

Also in these games, both (Ry,C;) and (Rg,C5) are equilibria. However,
now both would in principle prefer the former equilibrium to the latter. But this
doesn’t give them an automatic incentive to perform their part of equilibrium
(R1,C1): what one should do in order to maximize payoff depends also on one’s
expectations what the other will do. On the coordination problem of Game
2, Row should do her part of the coordination equilibrium (R;, C;) only if she
thinks (for whatever reason) that the probability that Column will choose C
is at least %, because only in that case Row’s expected utility of playing Ry,
EUg(Ry) tops her expected utility of playing Rs. Similarly for the coordination
problem of Game 3. Now Row should choose R, instead of R; if she takes it
to be at least eight times as probable that Column-chooser will choose C5 than
that he will choose C;. Although expectations always play a role when several
equilibria are possible, the contrast between games 1, 2, and 3 shows that this



role increases if the expected utilities of the different equilibria become more
alike.

Games 1, 2, and 3 each have two equilibria (in pure strategies), because the
expectations that players have of other players’ behavior were not supposed to
play a role. We saw that these expectations are in fact crucial to predict what
will be played, and we will show now that they even influence the equilibria of
the game. Consider Game 3 again, and assume that before deliberation Row
expects, for some reason, with a probability of 0.7 that Column plays Cs and
Column expects with the same probability that Row plays Ro. Suppose, more-
over, that these probabilities are common knowledge. Then, by taking these
expectations into account as well, this gives rise to a new situation, described
in Table 4, where the payoffs are now the expected utilities:

C Cs
Tabled: [ Ry | 24,24 2.4,0.7
Ry | 07,24 0.7,0.7

It is clear that in this situation we end up with play (R;,C1), which is
intuitively the correct equilibrium of Game 3. This discussion indicates how
important expected utility theory is for game theory. Even if we start out with
the strong assumption that the players have common knowledge of each others’
initial expectations about one another’s strategy choices,® these expectations
need not be their final expectations about these strategy choices. The reason is
that these prior expectations don’t take into account the reasoning of Column
(Row) given that he (she) knows Row’s (Column’s) prior expectations, i.e., the
process of deliberation.® Tt is the final expectations (with probability 1, if we
disregard mixed strategies) that count to determine what is the equilibrium that
is being played. And this is what we saw in this situation: the initial expec-
tations were overruled in the deliberation process that takes expected utility,
and not just prior expectations into account. So, our discussion points out the
relevance of individualistic Bayesian rationality.

The games we looked at so far had two features in common that singled
them out as pure coordination games. First, the preference relations between
action pairs were the same for both participants. Second, it was important for
both Row and Collumn to coordinate: the payoff of the coordinating action pair
was higher for both agents than the payoff of a non-coordinating action pair. In
this paper we are interested in games where we give up one or both of these
assumptions. First we will discuss (communication) games with two equilibria
in which only one of these equilibria is a strict one: to receive the (lower) payoff
of the other equilibrium, only one of the players (the speaker) has to perform his
part of the equilibrium play. After that, we will discuss (communication) games

5Harsanyi & Selten (1988) discuss a technique in which, what they call, an ‘objective prior’
can be defined solely based on the structure of the game. But it is disputable whether players
really use this technique to determine these prior expectations about what the other(s) will
do. For instance, it is unclear why precedence and other notions are taken to be irrelevant.

SFor some analyses of deliberation in games, see Harsanyi & Selten’s (1988) tracing proce-
dure, and Skyrms’ (1990) various methods of rational deliberation.



where both participants of the conversation have an incentive to coordinate on
an equilibrium (that is, the game has two strict equilibria), but where the payoffs
vary on out of equilibria actions-pairs. As we will see, giving up looking only at
pure coordination games introduces extra considerations concerning risk.

2.2 Risky versus safe play

In pure coordination games as discussed in the previous section, risk already
plays an important role. If one does not know for sure which equilibrium strat-
egy the other participant will play, it is possible that by maximizing one’s ex-
pected utility one actually ends up empty handed in a non-coordinating play of
the game. Because all non-equilibrium outcomes have the same zero-payoff for
both participants, one strategy might be called more risky than another just in
case its expected utility is lower. In the games we are going to discuss in this
section, however, some strategies can be called more risky than others because
of differences in the payoffs of non-equilibrium-plays of the game.

In the previous section we assumed that any non-equilibrium play of the
game gives both participants a payoff of 0. In an appealing article, Sally (2003)
observes, however, that in games that model communication (or many other
types of situations), this assumption is wrong: some non-equilibria can be
worse than others for one or both participants. If a speaker deliberates whether
she should encode the information she wants to communicate in a funny, in-
direct way or not, for instance, Sally notes that she has to take into account
that unsuccessful communication resulting from her (trying to) be(ing) funny
is probably worse than unsuccessful communication without her being indirect.
Consequently, Sally (2003) calls, for instance, ironical indirect speech risky.”
We think this is a very useful way of looking at communicative behavior. In
contrast to Sally (2003), however, we will distinguish different types of games
where the notion of ‘risk’ is involved. In doing so, we claim that Sally’s notion
of ‘risky speech’ is perhaps more widely applicable than suggested by Sally’s
own discussion.

Let us first discuss a game like the following:

C Cy
Game 5 : Ri|14+¢1 1-€,0
R, 1,1 1,1

Although this type of game has two equilibria, (R, C1) and (Rz, Cs), it is

"Parikh’s (2001) compares direct and indirect speech as well in his analysis of miscommu-
nication. If speaker and hearer make contrasting assumptions about the style used by the
other conversational participant, miscommunication follows, because they modeled the con-
versational situation as different games which have different outcomes. Parikh proposes that
in case style is involved, interlocutors first (should) play a metagame concerning the style (or
the use of language), and only then one of interpretation. One might think of Sally (2003)
and section 5 of this paper as an analysis of such a metagame.



not really one of coordination. The reason is that now the equilibrium (R, Cs)
is not a strict one: it doesn’t matter what Column plays if Row plays Ro. On
the other hand, Row would benefit from the combination (Ry,Cy) (if €, €’ > 0).
This is not only a strict equilibrium, but it is payoff-dominant as well. We call
an equilibrium payoff-dominant if and only if there is no other equilibrium in
the game that yields a strictly higher payoff for at least one player.

In case Row has no idea whether Column will play strategy Cy or Cs, we
assume that Row takes both strategies to be equally likely.® In that case, the
expected utility of playing R; is higher/equal/lower than the expected utility
of playing R, if and only if €e > / = / < €. For this reason, we will say that
Row is risk-loving iff € > €, he is risk-neutral iff ¢ = €/, and he is risk-averse iff
€ < €. Assuming by default that ¢ > €', we will denote strategy R; by Risky
and strategy Ro by Safe.

The other kind of games we are interested in is one in which both players
can choose between risky and safe strategies. Also this type of game has two
equilibria, but now it is important for both players to coordinate. This game
differs from games 2 and 3 discussed in section 2.1 in that both equilibria have
something distinctive to speak in their favor.

Consider Rousseau’s (1755) famous Reindeer hunt game as described by
Lewis (1969) and extensively discussed by Skyrms (2004); a simple two-player
symmetric game with two strict equilibria: both hunting Reindeer, (R, R),
or both hunting Squirrel, (S,S). Note that we slightly changed the story of
Rousseau’s game, but the contention of the game is intact.® The first equi-
librium gives the highest payoff to both, i.e., is payoff-dominant (or Pareto
optimal), because it gives to both a utility of, let us say, 6, while the second
equilibrium yields only one of 4. However, assume that if one hunts Reindeer
but the other Squirrel, the payoff is (4,0) in ‘favor’ of the Squirrel-hunter. In
that case, the payoff-dominated equilibrium where both are hunting Squirrel
still has something to speak in its favor: if one player is equally likely to play
either strategy, the expected utility of hunting Squirrel for the other is optimal.

R S Risky Safe
Game 6: Reindeer hunt: | R | 6,6 | 0,4 Risky | 1+e,14+€¢ —€,0
S | 4,0 | 4,4 Safe 0, —¢ 1,1

The more abstract right-hand example also has two (strict) Nash Equilibria
(if both € and € are higher than 0): both playing Risky, or both playing it
Safe. It is obvious that equilibrium (Risky, Risky) is payoff-dominant. Following
Harsanyi and Selten (1988), we will say that Nash equilibrium {(a*, b*) is risk-
dominant iff for all Nash equilibria (a, b) of the game,

8We realize that this is an unnatural assumption for Game 5, given that C7 weakly domi-
nates Cq. It is discussed here only for illustrative purposes.

9The game is normally called a ‘Stag hunt’, and hunting Stag is normally contrasted with
hunting Rabbit.



(URow(a*,b*) — URow(a, b*)) X (Ucol(a*,b*) — Ucol((a*,b)) Z
(URow(a,b) — URow(a*,b)) X (Ucol(a,b) — Ucol((a,b*)).

In the above example (Safe, Safe) is risk-dominant exactly if € > e. For this
reason, we will call a player risk-loving iff e€’, she is risk-neutral iff ¢ = ¢/, and
she is risk-averse iff € < €.

In contrast to the concept of payoff-dominance, the concept of risk-dominance
is based on individual rationality. Think of the numerical version of the Reindeer
hunt game, where it is common knowledge that the prior expectations before
deliberation that the other will play R is 0.5. In that case the game gives rise
to the following ‘expected utility’-table:

R S
Expected utilities: Reindeer hunt: | R | 3,3 | 3,4
S| 4,3 4,4

Obviously, in this situation the Nash equilibrium (S,S) will be played in
which both are hunting Squirrel.

The preference for playing her part of the risk-dominant equilibrium in the
Reindeer hunt game is closely related with the preference for playing Safe (or
Rs) in Game 5 (if € > €’). Suppose that a player doesn’t know what the other
player will do. In that case the speaker should choose the strategy that has the
highest expected utility. Suppose that, for lack of reasons otherwise, a player
takes both actions of the other player to be equally likely. One can show that
in that case the action which has the highest expected utility in the Reindeer
hunt game (or any other symmetric 2 x 2 game) is the strategy which is risk-
dominant. And this will be the case for the Safe/Risky-strategy if and only if
the player is risk-averse/risk-loving.

In the rest of this paper we will suggest that some decisions speakers and
hearers have to make when they have to coordinate their communicative be-
havior by salience can be modeled by the decisions that have to be made by
the players in the games discussed in this subsection. First, we will discuss
an example that we suggest can be modeled analogously to (an incomplete in-
formation variant of) Game 5: implicit communication where the conventional
meaning of the expression underspecifies what the speaker actually wants to
communicate. Then we will discuss some examples that can best be modeled as
‘impure’ coordination games with rankable equilibria and varying off-diagonal
payoffs as the Reindeer hunt. Following Sally (2003), we will suggest that this
game models the communicative decisions involved in cases that the meaning
intended to be communicated can ‘overturn’ the conventional meaning. Parikh’s
(2001) game-theoretical analysis of miscommunication in terms of ‘metagames’
is closely related. Finally we will discuss an example that is somewhere in be-
tween games 5 and 6. Before we will come to theses modelings, however, we first
will shortly introduce ‘signaling games’. These signaling games will be extended
in the following sections.



3 Games of communication

3.1 Standard signaling games

Lewis (1969) defined the notion of a signaling game in order to explain the
conventionalization of meaning of language without assuming any pre-existing
relation between messages and meanings.

A signaling game is a cooperative game amongst two players: a sender S
and a receiver R, whose shared goal it is to let R perform an action that is
appropriate with respect to the state S and R are in. This state is only observed
by S though, and S communicates it by means of a meaningless message. Think
of a couple of agents, the one looking out for hungry predators and the other
searching for food on the ground. Both players are in the same state — there is
a predator approaching or there is not —, but only S knows which state they are
in. S signals the state by means of a message that has no pre-defined meaning
— say, ‘buh’ or ‘bah’. In turn, R hears the message and is free to perform
any action of her liking, but every state has a most appropriate action. E.g. if
there is a hungry predator approaching, R should flee, otherwise R should keep
on searching. The best thing for S to do is to say ‘buh’ if there is a hunting
predator and ‘bah’ otherwise; and for R to flee when he hears ‘buh’” and not to
in case he hears ‘bah’. (It is equally good of course to do the same, but with
‘buh’ and ‘bah’ interchanged.) If S and R play the game in such an optimal
way, the meanings of the messages ‘buh’ and ‘bah’ are created in the play of
the game. As we will see below, playing in a way that makes the messages
meaningful amounts to coordinating on a Pareto-optimal Nash equilibrium.

For future reference, we formally define signaling games. Let T be the set
of states, M be the set of messages and A be the set of actions such that
IT| = |A] < |M]. Let f : T — A be the bijective function, that adds the
appropriate action f(t) € A to every type t € T. Then S (R) plays the signaling
game following strategy s (r), that is a function from 7' — M (M — A). In
cheap talk signaling games, successful communication of state ¢ (thus in case

f(t) = r(s(t))) is rewarded with 1, whereas unsuccessful communication (thus
in case f(t) # r(s(t))) is rewarded with 0, independent of the state ¢ and the
message s(t):

us(f,t, S, ’f’) = uR(fvt’ S, T) = { (1): i :;:‘Eg ; ;Ezgg;7 (1)

We assume that Nature picks the state according to some probability dis-
tribution P over 7.0 The utility function for S and R is the expected utility
relative to the probability distribution P over T

Us(s,r) = Ur(s,m) =Y P(t) x ug(f,t,s,7). (2)

teT
Finally, we define a cheap talk signaling game G as a tuple ({S, R}, P,
{S,R}, {us, ur}), where P is a probability distribution over T, S is the set

10We assume that P(t) > 0, for every t € T.



of strategies s : T' — M for player S; R is the set of strategies r : M — A
for player R; and {ug, ur} contains both players’ utility functions. G is called
‘cheap talk’ because ug and ug, simultaneously defined in (1) are called this
way.

As a small example, consider the signaling game with only two states t1, ts,
two messages mi, my and two actions aj,as, where f(t;) = a; for i € {1,2}.
Obviously, both players have four (pure) strategies each. Furthermore, let 2 =
P(t1) > P(t2) = y. Then, we have the payoff matrix below.

ty ta mi; Mo T 2 3 Ty
S1 mi mi (At ay aq S1 Tr,x T, X Y,y Y,y
S M1 Mo Ty aq a9 S |x,z 1,1 0,0 y,y
S3 Mgy My T3 Qs  aj s3|lxz,z 0,0 1,1 wy,y
Sq mao meo T4 an ag Sq T, T T, T Y,y Y,y

The resulting signaling game has four Nash equilibria: (s, r1), (82, 72), (83, 3)
and (s4,71). As the reader can check, only in (s, 72) and (s3,r3) communica-
tion takes place: these are precisely the payoff-dominant equilibria. Lewis calls
such equilibria ‘signaling systems’. Technically, (s, r) is a signaling system iff
f(t) = r(s(t)), for every t € T. Necessary condition for (s,r) to be a signaling
system is that both s and r are injective or one-to-one functions.

3.2 Super conventional signaling games

Signaling games are used by Lewis (1969) to explain literal, or conventional,
meaning in terms of the game-theoretic notion of ‘stability’. This doesn’t mean,
however, that we cannot motivate the use of unconventional message-meaning
combinations by making use of game-theoretical equilibrium as well. In this
paper we study the risk of using non-conventional, non-explicit, or non-literal
speech as a means of communication. In order to do so we introduce in this
section signaling games where there already exists a convention of explicit literal
meaning. We will call the resulting signaling games super conventional, and
sometimes write SC signaling games.

The intuition underlying SC signaling games has it that S and R play a
signaling game enjoying common knowledge of the fact that some strategy-pair
(s,r) is the conventional signaling system. We denote the conventional sender
and receiver strategy by means of cs and cr, respectively. It is this pair of
strategies that model the literal or explicit meanings. While playing an SC
signaling game, S and R have agreed on the conventional meaning of messages
in

M' = {m € M | there exists a t € T such that cs(t) = m},

the set that contains the messages that convey the to-be communicated types.
Since s is an injective function, |M’| = |T|. We assume that only the messages
in M’ can have a non-literal meaning.



Typically, non-explicit or non-literal utterances have it that the sentence
leave the actual interpretation underspecified, or, if taken literally, means some-
thing different than was intended by the speaker. In formal terms, although S
is of type ¢ she uses a message m # cs(t), and S wants and expects R not to
perform cr(m), if that exists at all, but f(¢t).

We will model the extra gain, in case of successful non-conventional commu-
nication by a parameter € > 0, whereas we punish the player (possibly both)
who deviated from its conventional strategy with the parameter-value ¢ > 0, in
case of unsuccessful communication.

This brings us to the main definition of this section. A Super Conventional
signaling game G s .ry is a standard signaling game G equipped with a con-
vention:

({5, R},P,{S,R},{us, ugr}, (cs, cr)),

where ug and ugr are the players’ utility function, defined below. P is the
probability distribution over the set of types. For the utility functions of speaker
and hearer in the signaling games discussed in the previous subsection it was
taken to be irrelevant which message was being used; it only mattered whether
communication was successful or not. In our superconventional signaling games
we will assume that at least for the speaker, but perhaps also for the hearer, it
is important which message is used for communication. In particular, it is taken
to be advantageous for the speaker (and perhaps for the hearer) to communicate
successfully with a non-explicit message, or with a message that should receive
a non-literal interpretation. In the following two sections we are going to discuss
examples where the speaker’s utility function should not be defined as in (1)
but rather as follows

1+e if f(t) =r(s(t)) and s(t) # cs(t);

s B 1, if f(t) = r(s(t)) and s(t) = es(t);
ug' (£t 5,7m) = 0. if f(t) £ r(s(t)) and s(t) = cs(t): (3)

—€, i f(t) # r(s(t)) and s(t) # cs(t).
Intuitively, uS° hard-wires that the speaker is moderately rewarded or punished
if she sticks to the conventional sender strategy (i.e. s(t) = es(t)). Of course,
still the utility-function tells that successful communication (i.e. f(t) = r(s(¢ )))

is better rewarded than unsuccessful communication (i.e. f(¢) # r(s(t))).

As for the hearer’s utility function, we will discuss two special cases: In section
4, where we discuss the risk of non-explicit communication, we will take the
hearer’s utility function to be the same as in (1):

_ )1 it f(E) = r(s(t));
ur(f,t,s,7) = { 0, if f(t) # r(s(t)). (4)
This means that only the speaker has to decide whether to play risky or not.

The hearer just has to assign the correct meaning to the given message. In
section 5, however, we will discuss linguistic phenomena where also the hearer

10



can play either risky or safe. In that section we will assume that the hearer’s
utility function is given by the following function:

e, i (1) = r(s(t) and r(s(t)) # er(s(t));

sy 4 IO = (s(0) and 1) = erls))
BT 0, if f(t) # r(s(t)) and r(s(t)) = er(s(t));
=, if f(t) # r(s(t)) and r(s(t)) # cr(s(t)).

In section 6 we will discuss an example where the players’ utility functions
are even more involved than in (4) and (5).

4 Risk of implicit communication

Let us assume a very simple signaling game, where we have two kinds of mean-
ings, t; and t5, and expressions, m; and me that conventionally denote ¢; and
to, respectively, in a context-independent way. Let us now assume that, in addi-
tion, we have an expression m,, that is lighter than either of m; and ms and that
has an underspecified meaning: it can mean both #; or t;. Formally, let us fix
that using m,, instead of m; or mq yields a bonus of € > 0. It is easy to see (e.g.
Parikh, 2001, van Rooij, 2004) that if it is common knowledge that the hearer,
R, takes t; to be more probable (salient) than to, P(t1) > P(t2), and my is more
costly than m,,, C(my) > C(m,), the ‘coding’ strategy that uses m,, to denote
t; (and mg to denote to) is the most efficient, i.e., payoff-dominant, ‘coding’
strategy to denote t; and t5. In particular, it is more efficient than the coding
strategy that uses mj to denote t;. However, when the relative probabilities of
t1 and ty are not shared between speaker S and hearer R and the latter has to
guess (by tossing a coin) which meaning the speaker takes to be more salient, or
probable, using a light message with an underspecified meaning is not going to
have a positive payoff.!! In the simple case above where the message with the
underspecified meaning can have only two specific denotations, the benefit of
communicating with a light expression must be very high in order to overcome
the risk of miscommunication. We are going to discuss a case like that of Game
5 repeated below.

& Co
Game 5 : Risky | 1+e61 1—¢€,0
Safe 1,1 1,1

For the case at hand, thus where t; is the case, we assume that the Safe
strategy is to send the correct explicit message in the relevant state, while the
Risky strategy is to use the light message with the underspecified meaning. C4
and Cy are the strategies that always interpret the explicit messages in the ex-
pected way, and to interpret m,, as t; and as ts, respectively. Thus, successful

1n case Pg is not commonly known, the situation cannot really be described as a (signaling)
game. Indeed, the standard equilibrium reasoning is not appropriate anymore.
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communication by context-independent expressions m; and mos — i.e., playing
the Safe strategy — is 1 for both agents; (ii) unsuccessful communication has a
payoff of 0, i.e., we assume that € = 1; and (iii) the benefit of successful commu-
nication with the light underspecified expression m,, instead of the conventional
explicit expression m; is €, which is higher than 0.!2

The hearer interprets the speaker’s message in the only appropriate way
in case the message has a context-independent completely specified meaning.
What the hearer does if he receives the underspecified message m, depends on
his beliefs: he interprets m,, as t; if he takes ¢; to be more likely, Pg(t;) >
Pg(t2), and he interprets m,, as to if he takes t5 to be more likely, Pr(t1) <
Pg(ts). Thus, the hearer has a choice between two strategies: C7 and Cy that
reflect that any conventional message m,. is attached to its conventional meaning
t. and that C; attaches t; to m,, for i € {1,2}. The speaker’s payoffs of these
two strategies in the different situations are given by following tables:

t i Oy to e
Implicit | 1+€¢ 0 Implicit | 0 1+4¢
Explicit 1 1 Explicit | 1 1

The speaker doesn’t know how the hearer will interpret the underspecified
message m,, because she does not know whether the hearer will take ¢; or t5 to be
more likely. We have seen above already that if the speaker takes C7 and Cs to
be equally likely, i.e., if Ps(C7) = Ps(Cs), the benefit of using the underspecified
message has to be at least 1, ¢ > 1. But what if Ps(Cy) # Ps(C2)? Let us
assume that the speaker believes with probability n that Pg(t1) > Pr(t2) (and
thus with probability 1 — n that Pr(t1) < Pgr(t2)). It is easy to see that the
speaker takes implicit communication to be worthwhile in situation t; if and
only if n x (1 +¢€) > 1. That is, for the expected utility of being implicit to
be higher than the expected utility of being explicit it has to be the case that

1—n

€> 1_7" The equality e = === can be plotted as in figure 1.

Obviously, if n is very close to 0 the use of m, will be a bad choice, but also

for other choices of n, it probably won’t pay to be implicit: if n is & or %, for
instance, the value of € has to be 2, or 3, respectively, which seems to be much

too high.

Being explicit is a safe strategy. It is optimal under the maximin strategy
and the minimax strategy. Things are more complicated when expected util-
ity is at issue, for now it also depends on the relative weight of n and €. But
the main, and perhaps obvious, conclusion of these considerations, whether ex-
pected utility plays a role or not, is always that it is safer to be explicit if you
don’t know (for sure) what your conversational participants takes to be the most
salient situation of T, and that it is risky to be implicit.'

12Notice that S prefers to play Risky if she takes strategies C1 and C3 taken by R to be
equally likely iff € > 1, (given that ¢ = 1).

13We have analyzed this situation with respect to a particular situation. We could have
analyzed also the more general situation, where the strategies implicit and explicit stand for
the strategies to use for all situations ¢; messages m, and m; respectively, and where the
actions of the hearer still depend crucially on the expectations. It is easy to see, however,
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Figure 1: A depiction of the states in which the expected utility of being implicit
equals the expected utility of being explicit. That is, e = =2,

5 Risk-dominance versus payoff-dominance

In this section we study the use of non-literal speech as a means of communi-
cation. Following standard practice in philosophy of language, we distinguish
between what a sentence means and what a speaker means by uttering this
sentence. If the sentence meaning gives rise to a fully specified interpretation,
the two will coincide in standard situations, i.e., when the speaker uses the
sentence in the conventional way. In specific circumstances, however, it can
be that even if the sentence has a fully specified meaning, the speaker means
something quite different with her use of the sentence than the literal meaning
of the sentence. This is the case when the sentence has besides a literal, also a
non-literal meaning. Think of the use of indirect speech (acts), irony (such as
over- and understatement), and metaphor. In the hearer’s process of attaching
the non-literal interpretation of a sentence, the hearer first has to recognize the
defectiveness of the utterance’s literal meaning. Following some suggestions of
Sally (2003), we will argue that this type of speech can be successfully modelled
as, what we called, a Reindeer hunt game, where both successful communi-
cation by the non-literal and the literal use of one’s language are equilibrium
plays of the game, but where the former is payoff-dominant, whereas the latter
is risk-dominant.

Sally (2003) argues that “people play the language game in a way that

that this would not result in a different analysis.
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is consistent with their play in all games.” Sally does so by fixing rules of
thumb!# that describe people’s behavior while playing coordination games in a
lab-setting. For instance, Sally considers the rules

e (A) In a game with one outcome risk-dominant and another “modestly”
payoff-dominant, the former is more likely to be chosen.

e (B) As sympathy between the players increases, a payoff-dominant, risk
dominated equilibrium is more likely to be realized.'®

Concerning the status of these rules Sally says that “these empirical find-
ings are clearly not hard and fast rules of coordination game play, but rather
tendencies manifest in normal play.” And this is exactly the way we will treat
them below.

To make these findings relevant for pragmatics, Sally introduces a “more
complete coordination game of communication” that does not take states/meanings
as primary objects but rather speech acts, as proposed by Austin (1962) and
Searle (1969). Accordingly, the payoff-functions range over pairs of speech acts.
Sally does not define them formally, however.

In contrast, we have strictly defined our super conventional signaling games
in section 3. Recall that super conventional signaling games were defined in
terms of states and actions — just like Lewis did —, and furthermore that re-
warded payoff not only depends on the success of communication but also on
whether or not the conventional strategies were respected. This conventional
meaning was supposed to be a commonly known parameter of the super con-
ventional game. As such, our model is not only more precisely defined than
Sally’s but also requires less complicated notions. I.e. the only notion required
besides the ones presupposed by Lewis is the notion of conventional meaning,
which itself can be considered the result of a Lewisean game. We will see that
this limitation does not limit Sally’s claim on language use resembling game
playing.

Sally, namely, applies his game-theoretical rules of thumb to his signaling
game to make predictions as to how people use language. He argues implicitly
that the payoff-dominant equilibria are the signaling systems that communicate
non-literally, whereas the risk-dominant equilibria communicate according to
the convention. Then, for instance, rule (A) would predict that people speak
literally by default; and rule (B) would predict that as sympathy between the
players increases, people are more likely to communicate non-literally.

In Sevenster (2004) it is proved that

14Gally calls them “Wittgensteinean signposts”.

15This rule is the result of empirical research. We think that this rule also has a theoretical
counterpart. As we saw above, different expectations about the opponent yield different Nash
equilibria. By modelling ‘sympathy’ as having expectations that the other player behaves such
as to maximize his actual utility (leaving out considerations of ezpected utility for the moment),
we can theoretically enforce risk dominated equilibria. That is, the more sympathetic the
players are towards each other, the more they will be tempted to play riskily. We believe
that this might have interesting consequences for the analysis of language change, but will not
speculate about this here.
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o If (s, r) is a signaling system in Glcs,ery, then (s, r) is a Nash equilibrium
in G(cs,cr)-

This result corresponds to Lewis’ result and establishes that also in this
model, signaling systems are the first-class citizens. Furthermore, characteriza-
tions of the payoff-dominant and risk-dominant equilibria are given:

e (s,7) is a payoff-dominant Nash equilibrium in Gcs .y iff (s,7) is a sig-
naling system and for every ¢t € T' it is the case that s(t) # cs(t).

o If € > ¢, then (s, r) risk-dominates all other signaling systems in Gy, cr)
iff s =cs and r = cr.

Taken strictly these formal characterizations do not teach us anything. In
line with Sally, however, we can make a sketchy account as to how they should
be interpreted. These characterizations, namely, enable us to apply rules (A)
and (B) to our super conventional signaling games, and the same predictions
can be made as Sally did.

To get a better understanding of these results let us consider the case of
indirect requests and see what are the implications for the parameters €, and
6/.16

As to indirect requests, think of a room containing a hearer having control
over the open window and a speaker who is cold. The speaker wants the hearer
to close the window and has two ways to communicate this. Either he uses
the conventional message, such as “Could you close the window” or he makes
an indirect request, such as “It’s cold in here”. The hearer on the other side
has also two option, either interpret the message figuratively or literally. This
simple game has two equilibria:

Figurative  Literal
Game T: It’s cold in here | 1+¢, 14+¢ —€,0
Could you close the window? 0, —¢ 1,1

That the correctly communicated “It’s cold in here” is more rewarding for
both (1 + € vs. 1) can be explained in terms of politeness: the speaker did not
have to command the hearer and the hearer is not commanded.

That ¢ > € means for the speaker that the benefit of being indirect is lower
than the cost of being misunderstood. In case of misunderstanding by the use
of a short message, the speaker would have to make a direct request, in order
to accomplish her goal. Misunderstanding for the speaker is less bad if she is
being literal, because she does not have to take the blame — I said so! On the
other hand, misunderstanding for the hearer is less bad if interpreted literally
— why didn’t you say so? Communicating literally is thus safe: the sentence
meaning provides a face-saving excuse in the event of miscoordination.

16The same story can be told for ironical statements, i.e. understatements like “I wasn’t
overimpressed by her speech.”
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6 How to interpret answers exhaustively

Until now we have discussed situations where it was possible to decompose the
utility function by answering two questions which were taken to be independent:
(i) was the intended content successfully communicated? and (ii) did the agent
use the conventional safe strategy or not? In the final substantial section of
this paper we are going to discuss a somewhat more complicated case: we will
give up the assumption that successful communication is a yes-or-no matter.
In particular, we are going to discuss an example where it is intuitively the
case that if the speaker adopts a risky strategy and the hearer a safe strategy
there will be some useful transfer of communication, although this information
transmission is not perfect. Thus, we will make a distinction in utilities when the
speaker is adopting a risky strategy between the case where the hearer adopts
an incorrect risky strategy, and a safe strategy.

In the previous sections we assumed that the speaker could choose to play
risky or safe, and that the hearer will just interpret the underspecified message
either correctly or incorrectly. Now we are going to look at a situation where
also the hearer can interpret an underspecified message either in a risky way or
in a safe way, and where the safe interpretation of an underspecified message
is better than the incorrect risky interpretation, but worse than a correct risky
interpretation. In abstract, these kind of situations give rise to a game like the
following:

tq & Cy Cs
Game 8 : Risky | 1+61 0,0 1—¢€¢,1—¢
Safe L1 1,1 1,1

where ¢ < 1. In the matrix of Game 8, C; denotes the risky strategy that is
correct in this situation; Cy the risky strategy that is incorrect in this situation,
while C5 stands for the safe strategy. Before we are going to analyze this kind
of situations, let us first convince ourselves of their existence by looking at the
interpretation of answers.'”

Consider the following dialogue:

(1) a. Bob: Who passed the examination?
b. Ann: John and Mary.

What can Bob conclude from Ann’s answer, besides the fact that John and
Mary passed the examination? It seems only natural to assume that Ann men-
tioned all individuals of which she knows that they passed the examination. By
making this assumption, Bob concludes that it is not the case that Ann knows
that Sue, for instance, passed the examination. This seems a very reasonable
inference to make.'8

17This is just one of many examples that behave in this way. We believe, however, that it
is an example that is more easy to explain than many of its alternatives.

18For a general formalization of this kind of this kind of reasoning, see van Rooij & Schulz
(2004).
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In many circumstances, however, Bob concludes something more from Ann’s
answer than just (i) the semantic meaning of the answer, and (ii) that it is not
the case that Ann knows that Sue, for instance, passed the examination: Bob
also concludes that Sue did not pass the examination. This extra inference comes
about via Bob’s extra assumption that Ann knows exactly who in fact passed
the examination, i.e., the assumption that Ann is competent on the extension of
the question-predicate.'® From the fact that Ann did not say that Sue passed
the examination; the assumption that she mentioned all individuals of which
she knows that they passed the examination; and the extra assumption that she
knows who passed, Bob concludes that Ann knows that Sue did not pass. Due
to the fact that knowledge entails truth, Bob concludes that Sue did, in fact,
not pass.

We see that due to an assumption of competence, Bob can strengthen what
she can infer from Ann’s answer by taking Ann to obey the principle to mention
all individuals you know to satisfy the question-predicate. There is, however,
also another way to strengthen this inference: it can be that Bob assumes that
Ann is not competent on the extension of the question-predicate. In that case,
Bob can strengthen her inference that it is not the case that Ann knows that Sue
passed the examination to the inference that it is not the case that Ann knows
whether Sue passed the examination. Notice that this is indeed a strengthening,
because the lack of knowledge that Sue passed is compatible with the knowledge
that Sue did not pass, but this is not the case for the lack of knowledge whether
Sue passed.

The above discussion shows that even if Bob assumes by Gricean reasoning
that Ann mentioned all the individuals of which she knows that they passed the
examination, this still leaves open three interpretations: one where Bob cannot
infer any more than this; one where Bob can conclude that Sue did not pass;
and one where Bob concludes that Ann doesn’t know whether Sue passed. The
latter two inferences are due to assumptions of competence and incompetence,
respectively. Of course, Bob’s (pragmatic) interpretation of Ann’s answer by
making these assumption is risky: his assumptions could turn out to be false,
and, consequently, his additional inferences as well.

But for Ann to give an answer like (1b) without explicitly mentioning what
more, if at all, she knows about the extension of the question-predicate is risky
as well: Bob might adopt the wrong assumption concerning Ann’s competence
about the question-predicate and interprets the answer in a different way as
intended. If Ann wants to be sure that Bob will understand the answer correctly,
she has to play it safe and be very explicit about her knowledge.

We can think of the dialogue as a game between Ann and Bob where both
either play risky or safe. Notice that this kind of game is not really a coordi-
nation game, because it seems natural to assume that in case Ann plays it safe
and is completely explicit about her knowledge, Bob will always interpret the
answer in the correct way. That is why also this game can most naturally be
thought of as a game with alignment of preferences. Assume that the dialogue

19 Again, see van Rooij & Schulz (2004) for one way to make this kind of reasoning precise.
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takes place in a situation where Ann is in fact competent on the extension of
the question-predicate. Then it gives rise to the following payoff-table at the
left hand side. At the right hand sight, we represent the expected values on the
assumption that n denotes the probability that Ann is competent:

Comp Incomp  Unkown Risky Safe
Game 9:| Risky | 1+e€ 0 1-¢ Risky | nx (1+€) 1-—¢
Safe 1 1 1 Safe 1 1

Suppose first that Bob, the column player, always plays risky. In that case
we are back to our discussion in section 4, and it pays for Ann to play risky
as well iff € > 1_7", where n denotes the percentage by which Bob makes the
correct prediction of competence. Thus, in case Bob is known to normally only
ask questions to somebody who he thinks is competent (a not unreasonable
procedure), the benefit of the short, but risky, answer for the answerer Ann
doesn’t have to be very large to still be worthwhile.

Now assume that Ann cannot assume that Bob always plays risky. Instead,
Bob interprets answers only in 50 percent of the cases by making the assumption
that the speaker was competent or incompetent. Denote the percentage by
which Bob makes the correct assumption of competence, given that Ann is
either competent or incompetent, to be n. In that case, it pays for speaker Ann
to be risky if and only if n(1 +¢€) > 1+ ¢.2° If we now assume that (for some
reason) the benefit of successful implicit communication is twice as high as when
the hearer interprets things in a safe way: € = 2¢’, the equality n(1+¢€) > 1+¢€
can be plotted as in figure 2.

It should not be surprising that, indeed, for Ann to play risky if she is not
sure whether Bob interprets in a risky way or not, she has to be even surer that
Bob makes the correct assumption of competence than in case it is known that
Bob plays risky.

7 Conclusion

Starting point of our paper is the insight that initial expectations that players
have of each other’s choice of action is important to solve a game with several
equilibria. This important role of expectations — though crucial for Lewis’s
(1969) analysis of convention — only recently was given an interesting twist
in game-theoretical analyses of conversation in the work of Sally (2003). He
discusses how the notion of ‘risk’ might be important in conversational situations
between speakers and hearers. In this paper we try to go beyond this work (i)
by clarifying the connection of Sally’s work with Lewisian signaling games, and
(ii) by looking at some additional ways in which speech can be risky.

20This can be shown by the following calculation:

1 iff
1+¢.

(FA+e]+[3(1-¢€)]
n(l+e)

VIV
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Figure 2: A depiction of the function n = (1+¢’)/(142€'). Tt reflects the states
in which the expected utility of playing risky, n(1+€) equals the expected utility
of playing safe, 1 + ¢, where € = 2¢.
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