
Quality and Quantity of Information Exchange

Robert van Rooy
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between sender and receiver? What is the relation between semantics and pragmat-
ics? These Gricean questions will be addressed from a decision and game-theoretical
point of view.
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1. Introduction

Within linguistic pragmatics, Grice’s (1967) cooperative principle has
always played an important role: the assumption that speakers are
maximally efficient, rational cooperative language users. Grice lists
four rules of thumb – the maxims of quality, quantity, relevance, and
manner – that specify what participants have to do in order to sat-
isfy this principle. They should speak sincerely, relevantly, and clearly
and should provide sufficient information. Notwithstanding its merits
and influence, Gricean pragmatics leaves something to be desired. The
most obvious shortcoming of the theory is that its key notions are
stated in a despairingly vague way. Grice’s formulation of the relevance
maxim, for instance, Be Relevant!, is somewhat disappointing. More
disturbing, perhaps, is Grice’s idealization of the conversational agents
as fully cooperative. Agents each come to a conversation with their
own goals and preferences and these coincide only in special cases.
Although language seems to be a multi-purpose instrument, a basic
purpose is to influence other’s behavior in accordance with one’s own
preferences. This suggests that strategic considerations play a much
more important role in language use than recognized by Grice. If lan-
guage is used to influence others, this persuasion might involve lying
and/or giving misleading information. This suggests that the tradi-
tional Gricean issues concerning the quantity, quality, and relevance of
(expected) information exchange should be considered from a broader
perspective. Taking such a broader perspective has consequences for
the relation between the conventional meaning of an expression and its
conversational impact: what the speaker actually means by her use of
an expression depends on her goals and preferences.
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2 Robert van Rooy

In this paper I will take such a broader perspective on language
use and address the above mentioned issues from a decision and game-
theoretical point of view.1 The paper deals with credible and relevant
information flow in dialogs: How useful is it for a receiver to get some
information, how useful is it for a sender to give this information, and
how much credible information can we expect to flow between sender
and receiver? I will also investigate the relation between the semantics
and pragmatics of natural language: does semantics have primacy over
pragmatics or is it rather the other way around? The purpose of this
paper is not so much to state new results (although there are some,
particularly in sections 3 and 6), but to show that insights of one dis-
cipline (economics) can help to resolve long-standing issues in another
discipline (linguistics), or at least that these old questions can be looked
upon from a new, broader, and therefore (hopefully) refreshing point
of view.

In the first part of this paper, sections 2 through 4, I will discuss
the usefulness of asking questions and receiving information. Thus,
this part concerns Grice’s maxim of relevance. The rest of the paper
discusses the amount of possible credible information transmission and
mainly concerns Grice’s maxim of quality. Game theory is used here to
account for the strategic reasoning in communicative behavior. Grice’s
maxim of quantity plays an important role throughout, as does the
relation between the semantics and pragmatics of natural language.

2. From informativity to relevance: questions and assertions

To know the meaning of a sentence, you have to know under which
circumstances this sentence is true. This naturally gives rise to the
stronger proposal to equate the meaning, or content, of a sentence with
its truth conditions, represented by the set of situations in which it
is true, i.e. the proposition expressed by that sentence. While such
an analysis might be natural for declaratives, sentences used to make
assertions, it is not so for interrogatives, sentences that express ques-
tions. Still, the latter can be analyzed along similar lines. According
to one approach, you know the meaning, or content, of a question
when you know what counts as a resolving answer. On the assump-
tion that the possible resolving answers are complete and therefore
mutually exclusive, it follows that a question should be represented
by a partition. Groenendijk & Stokhof (1984) argue for a partitional
view of questions on the basis of linguistic phenomena, but partitions

1 See also P. Parikh (1991, 2001), R. Parikh (1994), and Merin (1999) for taking
a similar perspective. These were all an important impetus for my own work.
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have always played an important role within statistical decision theory
(Savage, 1954) to determine the value of an experiment, a question to
nature. If questions are represented by partitions, they can be compared
naturally as follows: question Q is better than question Q′ iff for every
element of Q, there must be an element of Q′ such that the former
entails the latter, i.e. Q v Q′

Q v Q′ iff ∀q ∈ Q : ∃q′ ∈ Q′ : q ⊆ q′

In fact, this is Groenendijk & Stokhof’s (1984) entailment relation
between questions.

We may determine how ‘good’ questions and assertions are in terms
of entailment relations. In fact, this is the standard way of doing so
within linguistic pragmatics. Grice’s maxim of quantity, for instance,
which asks the speaker to be as informative as possible, is normally
formalized in terms of entailment. However, the entailment relations are
sometimes too fine-grained, and at other times, not fine-grained enough
for this aim. Entailment is too fine-grained, because it is clear that
speakers should not be more informative than required for the purpose
of the conversation (cf. Grice’s second submaxim of quantity). Thus, we
require a more context-dependent notion of ‘relevance’. The relations
are not fine-grained enough, because we have more intuitions about
‘relevance’ than these entailment relations can capture. Sometimes a
question or an answer can, intuitively, be more relevant than another,
although the former does not entail the latter. What this suggests is
that (i) questions and assertions should be compared to each other with
respect to a more quantitative ordering relation, but also that (ii) to
compare the usefulness of two questions or two assertions with each
other, we should relate these to (something like) a third question, or a
decision problem.

3. Decision Criteria and the Value of Information

The idea is that we ask questions not just to get new information, but
rather to get new information that might help to resolve a particular
decision problem. By relating questions to decision problems, we can
measure the utility of questions and answers/assertions. It turns out
that this measure depends crucially on the decision criterion used.

Decision problems are conventionally categorized according to the
decision maker’s knowledge of the state of nature (cf. Luce & Raiffa,
1957) and her preferences. A problem is under strict uncertainty when
the agent’s knowledge state is consistent with a number of situations,
and she cannot quantify her uncertainty about which of those situations
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is the real one. In decisions under strict uncertainty and ordinal prefer-
ences, the decision problem can be modeled by a triple like 〈T,E,≥〉,
where (i) T is the set of states that the agent thinks are possible,
representing her beliefs, (ii) E is the set of alternative actions that
she considers, and (iii) ≥ is a partial order on state-action pairs, i.e.
≥ ⊆ T ×E, which represents her preferences. Following Savage (1954),
I will take the actions in set E to be primitives. When our agent can
represent her preferences by a cardinal utility function, the ordering
≥ is replaced by U , a utility function from state-action pairs to real
numbers. When the agent can quantify her uncertainty, the problem
is standardly called a decision under risk. In these cases a decision
problem contains an additional probability function P which assigns to
states their (subjective) probabilities.

These different ways of representing decision problems gave rise to
different ways to resolve them. The pro’s and con’s of these decision
criteria have been discussed by several authors in terms of certain
postulates of rationality.2 I won’t go into these discussions, but will
only define the usefulness of assertions and questions in terms of them,
and evaluate their predictions. In this I will follow Savage (1954) in
discussing what he calls the value of observations. It turns out that
the different decision criteria don’t agree on whether the value of in-
formation of assertions behave monotone increasingly with respect to
entailment, or under which circumstances questions are predicted to be
useless.

One of the goals of this paper is to become clear about the rela-
tion between the semantics and pragmatics of natural language: does
semantics have primacy over pragmatics or is it rather the other way
around? In the next (sub)sections I will discuss to what extent semantic
entailment relations between propositions and questions can be seen
as abstractions from corresponding pragmatic utility-based relations
between them.

3.1. Decision with strict uncertainty: ordinal preferences

Suppose an agent’s decision problem is represented by a triple like
〈T,E,≥〉 as described above. Which action should our agent choose?
This is clear when there is one dominating action: an action that is pre-
ferred to all others in all situations. The existence of such a dominating
action is rare, however. Still, also in case there is no such an action we
can say what our agent should not do: she should not perform an action
that is (strictly) dominated by another action. Let’s define Oo(A), the
set of potentially optimal actions, as the set of non-dominated actions

2 See Luce & Raiffa (1957), for instance.
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after A is learned: {e ∈ E|¬∃e′ ∈ E : ∀t ∈ A : 〈t, e′〉 > 〈t, e〉} (where
‘>’ is defined as usual in terms of ‘≥’). Notice that this set may be
smaller, but certainly not larger, than the set of actions that might be
optimal after you learn the trivial proposition, i.e. Oo(>). We say that
proposition A gives relevant information just in case the set of non-
dominated actions after learning A strictly decreases. Similarly, we say
that A is more relevant than B with respect to decision problem DP ,
A >o

DP B, iff Oo(A) ⊂ Oo(B), i.e., learning A helps more to resolve
the decision problem than learning B does.

The set of alternative actions, E, gives rise to a set of propositions.
We can relate each action e ∈ E to the set of situations in which
there is no other action e′ in E that is strictly better. We will denote
the proposition corresponding with e by e∗ and the resulting set of
propositions by E∗. The set of propositions E∗ can be thought of as a
question (What should I do?), although it does not in general partition
the state space. Now the above induced ordering relation comes down
to the claim that A is better to learn than proposition B just in case the
set of actions that are potentially optimal after learning A is a subset
of the potentially optimal actions after learning B:

Oo(A) ⊂ Oo(B) iff {e∗ ∈ E∗ : A∩e∗ 6= ∅} ⊂ {e∗ ∈ E∗ : B∩e∗ 6= ∅}

It is worth remarking that, in this way, we have reduced the ordering
of propositions in terms of decision problems to the ordering between
answers that Groenendijk & Stokhof (1984) have proposed and applied
to account for some linguistic phenomena.

In general, it obviously holds that if A ⊆ B, then also Oo(A) ⊆
Oo(B). Thus, new information can never be undesirable in the sense
that it increases the uncertainty of the decision (i.e., makes more actions
potentially optimal). Although the reverse does not hold, something
more general is the case: if Oo(A) ⊆ Oo(B) holds for every decision
problem, it also is the case that A ⊆ B. Thus, we have the following

Fact: A ⊆ B iff ∀DP : A ≥o
DP B.3

Can we now also define a comparative ordering relation between
questions? The following proposal is straightforward: Q ≥o Q′ iff ∀q ∈
Q : ∃q′ ∈ Q′ : q ≥o q′. From the fact proved above and the definition of

3 Proof: We know already that if A ⊆ B then for all decision problems DP:
A ≥0

DP B. To prove the other way round, suppose that ∀DP : A ≥o
DP B, but

A 6⊆ B. Then ∃t ∈ A : t 6∈ B. But then we can think of a relation > and an action e
such that ∀e′ 6= e : 〈t, e〉 > 〈t, e′〉 and ∀t′ ∈ B : 〈t′, e′〉 > 〈t′, e〉. Thus, e ∈ Oo

DP (A),
but e 6∈ Oo

DP (B), which is in contradiction with what we assumed.
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Q v Q′, we immediately have the following

Fact: Q v Q′ iff ∀DP : Q ≥o
DP Q′.

The above facts are obviously interesting for the semantic-pragmatic
interface: one proposition/question entails another just in case it is
always more (or equally) useful.

Although the definition of relevance given here is quite appealing, we
have more intuitions about it than this qualitative notion can capture.
If my choice between action e1 and e2 depends on whether both John
and Mary are sick, your assertion At least John is sick is compatible
with both e∗1 and e∗2, but still felt to be very relevant. Similarly for
questions: If I want to find out who of John, Mary, and Sue are sick,
the question Who of John and Mary are sick? is felt to be more informa-
tive, or relevant, than the question Is Sue sick?, although the relevance
relation discussed in this section does not compare both questions. In
the following sections we will overcome these problems by representing
decision problems in a more quantitative way.

3.2. Decision under strict uncertainty: Maximin

If a decision maker’s preferences between state-action pairs can be
represented by a cardinal utility function U , we can make stronger rec-
ommendations about which action the decision maker should perform.
According to Wald’s (1950) maximin criterion of solving a decision
problem, we should choose that action e which maximizes e’s security
level. The security level of e, S(e), is the utility of action e under the
worst possible consequences that the agent can imagine, i.e. that the
worst possible state in T is true:

S(e) = mint∈T U(t, e)

The action to be chosen, i.e. the action with maximal security level,
is then maxe∈ES(e). Thus, Wald suggests the following decision rule:

choose ei such that S(ei) = maxe∈ES(e) = maxe∈Emint∈T U(t, e)

To illustrate, look at the following decision problem:

U -table e1 e2 e3

t1 5 2 3

t2 6 0 2

t3 0 3 4
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Quality and Quantity of Information Exchange 7

Notice that this matrix has a maximin value of 2, i.e. max{0, 0, 2} =
2 = U(t2, e3). This decision criterion corresponds with one of an agent
choosing first in a zero-sum 2-stage sequential game with complete
information. And indeed, the rule is a very pessimistic criterion of
choice; its general philosophy is to assume that the worst will happen.

On the assumption that, when confronted with a decision problem,
the agent will make the maximin decision, the decision problem also has
a value: the security level of the action which has the maximal security
level when the agent has to choose now:

MV (Choose now) = maxe∈ES(e)

In our case MV (Choose now) = 2, since maxe∈ES(e) = U(t2, e3) = 2.
But now suppose that the agent doesn’t have to choose now, but

has the opportunity to first receive some useful information. Suppose
that another participant of the dialogue truthfully asserts A, and that
the agent herself updates her belief state with A. Let us now define
the security level of e after A is learned, S(e/A), as the utility of
e given the worst outcome possible when A is true, i.e. S(e/A) =
mint∈(T∩A)U(t, e). Then we can define the (maximin) value of choosing
after A is learned, MV (Learn A, choose later), as maxe∈ES(e/A):

MV (Learn A, choose later) = maxe∈ES(e/A) = maxemint∈AU(t, e)

If A = {t1, t2}, for instance, this value is maxe∈Emint∈{t1,t2}{U(t, e)} =
max{5, 0, 2} = U(t1, e1) = 5. Using this value, we can now determine
the maximin value of the information A itself as the difference between
the value of choosing after learning A, MV (Learn A, choose later), and
the value of choosing now, MV (Choose now):

MV (A) = MV (Learn A, choose later)−MV (Choose now)
= maxe∈ES(e/A)−maxe∈ES(e)

For our example where A = {t1, t2}, this value is positive: MV (A) =
5− 2 = 3. We say that receiving proposition A is better than receiving
B, A > B, iff MV (A) > MV (B). It may appear that the exact numbers
are crucial for this ordering relation. However, this is not really the case.
The preference ranking on propositions determines the maximin value
up to a linear transformation with positive coefficient.4

How is this ordering relation related to the one induced by entail-
ment? We will show that the former is at least as fine-grained as the
latter. It is easy to see that when A ⊆ B, the value of choosing after

4 Based on the fact that the utility function itself is based on a preference ranking
only up to such a linear transformation.
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you learn A, MV (Learn A, choose later), is always at least as high as
the value of choosing after you learn B, MV (Learn B, choose later).
To show this, notice that ∀e∀A : mint∈AU(t, e) ≥ mint∈T U(t, e). From
this it follows that ∀A : maxemint∈AU(t, e) ≥ maxemintU(t, e). But
this means that the value of A is always greater than or equal to 0,
MV (A) ≥ 0, and that if A ⊆ B, then MV (A) ≥ MV (B). Thus, the
value of information according to the maximin decision rule behaves
monotone increasingly with respect to the subset relation, ‘⊆’, between
propositions.

Does the inverse of this relation also hold? Of course it won’t be
the case that whenever MV (A) ≥ MV (B) it also holds that A ⊆ B.
Something more general, however, does hold: If MV (A) ≥ MV (B)
with respect to every decision problem, i.e. with respect to every utility
function, it also is the case that A ⊆ B.

Fact: A ⊆ B iff ∀DP : MVDP (A) ≥ MVDP (B).5

Notice that this fact means that in zero-sum games it never does
any harm to get information. For the player who has to choose which
state is true, this means that in such games it is never useful to give
(truthful) information. Indeed, giving truthful information would, in
a game-theoretical setting, mean that before the other player makes
his move, you would already truthfully publically commit yourself to
a particular choice of action, which is never a useful thing to do in
zero-sum games.

Just as in the previous section, we might also define the usefulness of
new information in terms of the set of actions it excludes as potentially
optimal. In order to do so let us define OMV (A) to be {e ∈ E|∃B ⊆ A :
S(e/B) = maxeS(e/B)}. According to this usefulness criterion, new
information behaves monotone increasing. The set of possible optimal
actions can only decrease when one receives more information. The
stronger fact can be proved just as in the previous section: A ⊆ B just
in case for every decision problem DP, OMV

DP (A) ⊆ OMV
DP (B).

In accordance with the negative philosophy behind the maximin
decision criterion, we may now also define the value of a question,
MV (Q), as the value of the answer which has the lowest value:

5 Proof: We know already that if A ⊆ B then for all DP, MVDP (A) ≥ MVDP (B).
Suppose that the other way round is not the case, i.e., that ∀DP : MVDP (A) ≥
MVDP (B) but A 6⊆ B. Then ∃t ∈ A : t 6∈ B. But then we can think of a U such that
∀e : ∀t′ : t′ 6= t → U(t′, e, ) > U(t, e). This means that ∃U : maxemint′U(t′, e) =
maxeU(t, e) and thus that MV (A) = maxeU(t, e). But if t 6∈ B then MV (B) >
maxeU(t, e) = MV (A). This is in contradiction with what we have supposed before.
Thus if for all DP , MVDP (A) ≥ MVDP (B), then it has to be the case that A ⊆ B.

QuanQualfinal.tex; 4/04/2003; 11:42; p.8



Quality and Quantity of Information Exchange 9

MV (Q) = minq∈QMV (q)

Thus, a question is as good as its least useful answer. What is the value
of a question like {{t1, t3}, {t2}}? In order to calculate this, we first
determine for both answers their maximin values: maxe∈Emint∈{t1,t3}
U(t, e) = max{0, 2, 3} = U(t1, e3) = 3, and maxe∈Emint∈{t2}U(t, e) =
maxe∈EU(t2, e) = U(t2, e1) = 6. If the value of the question is equated
with the difference between the value of the answer with the minimal
maximin value and the maximin value of the original decision problem,
the value of the question, MV ({{t1, t3}, {t2}}), is 3 - 2 = 1.

In section 2 we said that question Q is more fine-grained than
question Q′ iff Q v Q′. From the fact that the values of assertions
behave monotone increasingly with respect to the subset relation ‘⊆’, it
follows immediately that the values of questions also behave monotone
increasingly with respect to the relation ‘v’. This has the consequence
that the most fine-grained question will also have the highest value.
However, just as for propositions, we can prove that something more
general holds: Q v Q′ iff the maximin value of Q is higher than that
of Q′ for every decision problem.

Fact: Q v Q′ iff ∀DP : MVDP (Q) ≥ MVDP (Q′).6

Now suppose that the question is maximally fine-grained, i.e. that
each answer singles out a unique state. In that case, the expected
value of the question, i.e. the expected value of perfect information
is the difference between mintmaxe∈ES(e, t) and maxe∈ES(e). But
this is the same as the difference between the so-called minimax-value
of a decision problem, i.e. mintmaxeU(t, e), and its maximin-value,
maxemintU(t, e). Because this difference can never be negative, the
most fine-grained question will indeed never have a negative value. To
illustrate the difference between the minimax- and the maximin-value,
look at our matrix representing the decision problem again:

6 Proof (thanks to Katrin Schulz): The proof from left to right follows
from what I said earlier. From right to left we prove by contraposition. Sup-
pose ∀DP : MVDP (Q) ≥ MVDP (Q′) but Q 6v Q′, i.e. ∃q ∈ Q, r1, r2 ∈
Q′ : q ∩ r1 6= ∅ and q ∩ r2 6= ∅. Now take a DP with three actions: e1, e2

and e3 and U such that ∀i : mint∈T U(t, ei) lays in q (*). Moreover, sup-
pose that mint∈(q∩r1)U(t, e1) < mint∈(q∩r1)U(t, e2) < mint∈(q∩r1)U(t, e3) and
mint∈(q∩r2)U(t, e1) > mint∈(q∩r2)U(t, e2) > mint∈(q∩r2)U(t, e3). Then it follows
that maxe∈Emint∈r1U(t, e) > maxe∈Emint∈qU(t, e) < maxe∈Emint∈r2U(t, e). To-
gether with assumption (*) we can conclude that MVDP (Q) < MVDP (Q′), which
is in contradiction with our supposition. This is enough to prove the fact.
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U -table e1 e2 e3

t1 5 2 3

t2 6 0 2

t3 0 3 4

Notice that this matrix has a minimax value of 4, i.e. min{5, 6, 4} = 4 =
U(t3, e3), and a maximin value of 2, i.e. max{0, 0, 2} = 2 = U(t2, e3).
This means that the maximin value of the most fine-grained question,
MV ({{t1}, {t2}, {t3}}), is 4 - 2 = 2. This, of course, is the maximal
value a question can have, given this decision problem.

Given a matrix representation of a decision problem as above, U(t, e)
is the entry in row t and column e. Adopting some terminology from
game-theory, we call the pair 〈t, e〉 a saddle point for the matrix, when
U(t, e) is the largest entry in its row, and the smallest entry in its
column. Notice that the above decision problem doesn’t have a saddle
point. What is the value of a question when the original decision prob-
lem does have a saddle point? A well known game-theoretical fact tells
us that when a game has a saddle point, (the Nash equilibrium of a
zero-sum game), the minimax value coincides with the maximin value.
But this means that in such cases even the finest-grained question has
a value of 0, i.e. the question is predicted to be useless. In these cases
coarser-grained questions will also have a value of 0. Thus, the maximin-
criterion for choosing predicts that asking questions is useless when the
‘game’ has a saddle point. But this prediction becomes problematic,
and very counterintuitive, when we allow for mixed actions, since when
all mixed-actions are allowed, saddle-points always exist in two-person
zero-sum games. This means that questions are always predicted to be
useless when answers can be mixed acts.7

3.3. Decision under risk: expected utilities

In the previous section I assumed that the questioner should always
expect the worst response. The result was that too many questions were
predicted to be useless. I now claim that the assumption is not natural

7 Similarly as for the maximin criterion, we can also determine the value of asser-
tions and questions with respect to other decision criteria under strict uncertainty,
in particular Savage’s (1954) minimax loss criterion (cf. Szaniawski (1967) for an
analysis of (among others) the minimax loss value of perfect information). One can
show that the facts proved here for maximin decision rule are true for this criterion
as well. The consequence of allowing for mixed actions is not as problematic, however,
for the minimax loss criterion.
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and propose dropping it. Since the respondent gives a true answer to the
question, why not determine the utility on the basis of the expectation
one has about which answer is true? Indeed, it seems more natural
to assume that the value of the question is the expected value of the
answer, where expectation is measured in terms of probability.

When the agent can quantify her uncertainty, and we can represent
her uncertainty by a probability function, the problem is standardly
called a decision under risk. In these cases a decision problem is mod-
eled as a quadruple like 〈T, P,E, U〉, where P is a probability function
over T . Now we say that the expected utility of action e, EU(e), with
respect to probability function P is

EU(e) =
∑

t

P (t)× U(t, e)

If our agent faces a decision problem and she has to choose now, she
obviously should choose the act with the highest expected utility.

UV (Choose now) = maxe∈E

∑
t

P (t)× U(t, e)

The utility value of making an informed decision after learning A,
UV (Learn A, choose later), is the expected utility conditional on A of
the action that has highest expected utility (thus, maxeEU(e/A)):

UV (Learn A, choos later) = maxe

∑
t

P (t/A)× U(t, e)

Now we determine the value, or relevance, of the assertion A as follows:

UV (A) = UV (Learn A, choose later)− UV (Choose now)

One may claim that in a cooperative dialogue one assertion, A, is
‘better’ than another, B, just in case the utility value of the former is
higher than the utility value of the latter, UV (A) > UV (B). However,
according to this measure new information might have a negative value:
although A ⊆ B, it might be that UV (A) < UV (B).

The notion UV (·) is very useful to determine the utility values
of questions. We say that the expected utility value of question Q,
EUV (Q), is the average utility value of its possible answers:

EUV (Q) =
∑
q∈Q

P (q)× UV (q)

Somewhat surprisingly, perhaps, given the fact that UV (q) can be
negative, EUV (Q) cannot be negative. This can be shown using the
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fact that our notion of EUV (Q) is provably equivalent to the expected
value of sample information,8 EV SI, which plays an important role
in statistical decision theory (cf. Raiffa & Schlaifer, 1961). In fact, the
value will only be 0 in case no answer to the question results in the
agent changing her mind about which action to perform. In these cir-
cumstances the question really does seem irrelevant, and it thus seems
natural to say that question Q is relevant just in case EUV (Q) > 0.
It should also be obvious that this measure function totally orders all
questions with respect to their expected utility value. As a special case
of Blackwell’s (1953) theorem, we can prove that if EUVDP (Q) is the
expected utility of question Q with respect to decision problem DP ,
it holds that Q v Q′ iff ∀DP : EUVDP (Q) ≥ EUVDP (Q′). Thus, we
can think of the semantic entailment relation between questions as an
abstraction from the corresponding pragmatic utility based relation.9

What about the more cautious utility measure that can be defined
similarly to the ones we defined in the previous (sub)sections? Let
OEU (A) be the set of possible optimal actions after one learns that A is
the case: {e ∈ E|∃B ⊆ A : EU(e/B) = maxeEU(e/B)}. As one might
expect, this utility measure is monotone with respect to informativity.

3.4. A brief comparison

In this section I have discussed some utility measures of assertions
and questions with respect to various types of decision situations. The
difference between, on the one hand, the purely qualitative decision
situation, and the ones where we have more quantitative information,
on the other, is that in the latter case a more definite recommondation
can be given. However, this recommendation is risky, even when the
beliefs are not represented by a probability function. Define OPT (A)
to be the set of actions optimal if A is the case, i.e. OPT (A) = {e′ ∈
E|V (e′/A) = maxeV (e/A)}, where V is either ‘S’ or ‘EU’. Then neither
is monotone increasing in the following sense: A ⊆ B → OPT (A) ⊆
OPT (B). However, we saw that with respect to OV (A) (V is either
‘MV ’ or ‘EU ’), both decision rules behave monotone: the set of possible
optimal actions can only decrease when one receives more information.
In this sense, the value of information behaves the same in the two
quantitative decision situations as in the qualitative one. We also saw
that, when we abstract away from the particular decision situation, an

8 See van Rooy (to appear).
9 For a discussion of the relation between, on the one hand, the utility values of

assertions and questions as discussed in this section and, on the other hand, some
information values definable in terms of Shannon’s (1948) communication theory,
see e.g. van Rooy (to appear).
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ordering in terms of the measure O reduces to (or characterizes) the
context-independent entailment relation in all cases considered.

In those cases where a definite recommodation could be made, we
could also determine the utility value of (expected) new information.
However, we saw an important difference between the maximin and
expected utility decision rules with respect to the utility of assertions:
in contrast to maximin, deciding by expected utility has the effect that
new information can, from a first-person point of view, decrease the
(expected) utility of the (at that moment) preferred action. This is
due to the fact that deciding by expected utility is, in a sense, less
cautious than deciding by maximin. The extra risk involved if one takes
probabilities seriously is that due to the high probability of favorable
situations, learning that a less favorable situation is true can have more
damaging effects.

In this section we saw that although the maximin decision criterion
for assertions doesn’t seem unnatural, the use of the criterion to mea-
sure the value of questions is based on the counterintuive assumption
that the answerer will give the worst possible response. The unnatural-
ness of the measure is reflected by the (many) circumstances in which
questions are predicted to be useless. This is why we introduced the
notion that measures the expected utility of a questions, which worked
much more in accordance with intuition. However, the following section
will show that an overly simplistic use of the expected utility measure
leads to counterintuitive predictions concerning the value of questions.

4. Information hurts

Intuitively, an informed decision maker is better off than one with
less information. And, indeed, for the decision rules discussed in the
previous section, we have seen that one can always expect better results
from making decisions on more knowledge rather than less. Receiving
information was modeled by eliminating states that represent what
one believes. A state, or world, represents everything that is relevant
to the decision maker to determine her action. In particular, it should
represent the actions that other agents perform that are relevant for her
payoff. The actions of the other agents depend, of course, partly on their
beliefs. But this means that, in our way of determining the (expected)
utility of new information, we have made an important assumption:
if our decision maker learns something, other agents that can make
decisions that are payoff-relevant for the actions of our agent herself
do not learn anything. As we will see in this section, if we drop this
assumption, getting more information can be harmful.
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14 Robert van Rooy

4.1. Information rejection in games

In the previous section we have shown that it is always considered to
be useful for an agent to ask for information. Paradoxically enough,
however, in games this doesn’t seem to be the case. In some game-
like situations one or all participants of a game might refuse to get
more information, on the grounds that it would hurt them.10 In this
section we will informally discuss some such examples borrowed from
Hirshleifer & Riley (1992) and see how to resolve this paradox.

Rejection of public information. Suppose three identical indi-
viduals are offered the following deal. Provided there is unanimous
agreement to the proposal, two of them will receive a payoff of three
euros, but one of them will get nothing. If any one of them doesn’t agree,
they get one euro each. If it is commonly assumed that the chance for
being the unlucky person is 1

3 , expected utility theory predicts that
they should agree to the proposal. But, before that decision is actually
effectuated, the persons are offered another option: they can choose to
be informed in advance, without charge, as to who the unlucky person
would be. Evidently, if the three were unanimously willing to accept
the initial gamble, they must now be unanimously unwilling to accept
the information even if given for free – since receiving it would destroy
the possibility of unanimous agreement on the proposal.

Rejection of private information. Two individuals i and j are to
predict whether the top card of a shuffled deck is black or red. The
predictions are made in sequence: i guesses first, and then j (after
hearing i’s guess). If they make the same prediction, each wins 1 euro,
whether their prediction turns out correct or not. If they disagree, the
one who is correct wins 3 euros, and the other nothing. Since i has no
basis for preferring one or the other color, he will choose at random.
Then j will choose the opposite color, so each will have an expected
gain of 1.50 euros. Now suppose someone offers, without charge, an
arrangement whereby the first player i is told the actual color of the
top card before he makes his prediction. Evidently, the parties would be
unanimous in rejecting that arrangement – even i as the “beneficiary.”
For, with that information, individual i would choose the correct color,
j would then make the same choice, and they would each gain only 1
euro rather than an expectation of 1.50 euros.

As explained by Hirshleifer & Riley (1992), in both examples, the
information would be rejected because, while there is a latent conflict
of interest among the players, that conflict is not relevant for the de-
cisions made in a state of ignorance. Disclosure of the information,

10 See, for example, exercise 28.2 of Osborne & Rubinstein (1994).
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however, makes the latent conflict of interest an actual one, which is
disadvantageous for all players involved.

The fact that information may hurt the agent who receives it may be
counter-intuitive at first sight and in conflict with Blackwell’s theorem
mentioned in section 3.3. However, this conflict is not real. As explained
by Neyman (1991), more information is always valuable to an agent,
if everything else remains the same, in particular, if the others are not
aware of the fact that the agent receives new information. Otherwise,
the other agents may behave in a way that hurts the informed one.11

Notice that in both examples above all involved players learn some-
thing. In the second example, for instance, j learns the higher order
information that i learned which state holds. Thus, these examples are
not in conflict with the claim that in general more information may
never hurt (as long as the other players do not learn anything). More-
over, they illustrate the intuitively obvious fact that it can sometimes be
important te keep secret not only what information you have, but also
the higher-order fact that you have secret information. The examples
also show that the difference between private versus public learning is
relevant not only for determining the utility of new expected information
(questions), but even for the utility of receiving new actual information
in a public or private assertion. The logical effects of learning public
(versus private) information has been a major concern in recent anal-
yses of (dynamic) epistemic logic (e.g. Fagin et. al., 1995, Gerbrandy
& Groeneveld, 1997, and Baltag, Moss & Solecki, 1998) where learning
higher order information is represented explicitly. Kooi (this volume)
and Van Benthem (this volume) discuss how learning this kind of in-
formation also affects the updating of probabilistic information states.
This section shows how these investigations are relevant for multi-agent
decision situations.

4.2. Misleading information

In section 3.3 we saw that deciding by expected utility has the effect
that new information can, from a first person point of view, decrease the
expected utility of the (at that moment) preferred action. More serious,
however, are cases where new (expected) information is considered to
be useful by the agent herself, but is disadvantageous if we look at it
from the perspective of an outside viewer who is better informed. In
this respect, new information might really be misleading.

Consider the following decision problem discussed by Geanakoplos
(1994) with an agent wondering which of {e1, e2} she should perform.

11 See, however, Bassan et al. (ms) for a result stating that, in a certain class of
interactive decision situations, information will never hurt.
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16 Robert van Rooy

e1 e2

t1 -2 0

t2 3 0

t3 -2 0

On the assumption that the three states are equally likely, it is clear
that the agent will choose action e2 because that has, on average, a
higher utility than action e1, 0 versus −1

3 . Thus, the value of choosing
now is also 0, UV (Choose now) = 0. Suppose that t1 is the actual
situation and that our agent receives proposition {t1, t2}. Although
this new information has a positive utility value: UV ({t1, t2}) = 1

2 , the
new information is very misleading for our agent. In contrast to the
initial state, after she got the information she would make the wrong
decision: choose e1 with a payoff of -2, instead of e2 with a payoff of 0.
Assume now that our agent asks what the actual state is to someone
who cannot distinguish t1 from t2. Thus, this person’s knowledge state
can be characterized by partition {{t1, t2}, {t3}}. This means that if
t1 is the actual state, he will answer with proposition {t1, t2}, which,
again, means disadvantageous information. We can conclude that it
can be a bad idea to ask someone a question who does not know the
complete answer, even if he is known to be fully cooperative.12

However, there is another reason why we should not always act
upon truthful information received from conversational participants.
This second reason has everything to do with Grice’s maxim of quan-
tity: a cooperative speaker should not withhold relevant information!
Assume, again, that our agent asks about the actual state, but that
the answer that the other participant gives depends on the state: in
t1 he will assert proposition {t1, t2}, in t2 he asserts {t2} and in t3,
{t2, t3}. Being an expected utility optimizer, our agent would shift her
choice from e2 to e1 for any of these answers. But notice that although
all three answers have a positive utility value, 1

2 , 3, and 1
2 respectively,

in two of the three states, she ends up making the wrong decision!
Consider the answerer’s point of view and look at the answer strategy
S that he used: S(t1) = {t1, t2}, S(t2) = {t2}, and S(t3) = {t2, t3}.
Assuming that BR(p) denotes the best-response action of our agent
after she learns proposition p, we can determine for each state t, the

12 Or to ask a question whose complete answer does not fully resolve the decision
problem. A similar point was already made by Good (1974), who concluded that a
little learning might be dangerous.
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value U(t, BR(S(t))). Now we see that this value is positive only in t2,
U(t2, BR(p)) = U(t2, e1) = 3, but negative in the other states, i.e. -2.

Above we assumed that the answerer was using strategy S. But you
might wonder why he would do that. Well, suppose that independent
of which state actually holds, the answerer prefers our agent to perform
e1 instead of e2. Suppose, for instance, that the combined utility table
of the answerer (first entry) and our agent can be pictured as follows:

e1 e2

t1 1,-2 0,0

t2 1,3 0,0

t3 1,-2 0,0

For a situation that can be modeled by the above multi-agent de-
cision table, answer strategy S makes sense: the answerer wants our
agent to shift her choice from e2 to e1 even in situations where this
is disadvanteguous for the agent herself. However, she wouldn’t always
do that if he were to tell her the exact state of nature. In order to
effect behavior that is favorable to himself, the answerer’s strategy is
to give different amounts of information in different states. If our agent
takes the new information at face value, she can be manipulated by
the answerer and will act in accordance with his, but not her own,
preferences. Thus, if the preferences of the agents are not harmonically
aligned, conversational participants cannot be expected to be fully
cooperative, and might not say the whole truth.

But now suppose that our agent doesn’t take the information she re-
ceives at face value, but instead takes into account the answer strategy
employed by the other dialog participant. In that case, the utility of
receiving proposition S(t) in state t is not simply U(t, BR(S(t))), but
rather U(t, BR(S−1(S(t)))). In that case, only proposition S(t2) has a
non-zero utility, namely 3, and our agent will not act against her own
preferences. And this is also expected by what we said above. In con-
trast to {S(t1), S(t2), S(t3)}, the set {S−1(S(t1)), S−1(S(t2)), S−1(S(t3))}
does partition the state space. According to our way of determining the
expected utility value of questions, this value for the latter ‘question’
cannot be negative, and we have just seen that this, indeed, is not the
case.
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5. Quality of information exchange

From the discussion in the previous section we can conclude that an
agent can be manipulated by new information given by another agent
in case she takes this information at face value. No manipulation is
possible, however, when she knows the strategy ‘behind’ the asser-
tions/answers of the other agent. Thus, the extent to which an agent
can determine the answer strategy of her dialog participant is of crucial
importance. Game theory is the discipline that studies, among other
things, this issue. In fact, we will see in this and the following section
that game theory not only discusses in which circumstances misleading
information exchange is likely to occur, but also seeks to characterize
situations in which credible information exchange cannot occur at all. A
statement is credible whenever the hearer has good reasons to believe
what the speaker says. The statements discussed in game theory, threats
and promises in particular, typically involve actions the speaker himself
intends to carry out. They are seen as strategic moves to influence
the hearer’s actions. The purpose of the following sections is to show
that the analysis of the credibility of actions-statements can be used to
study the credibility of assertions in general. At this point, these game-
theoretical considerations become relevant for Gricean pragmatics, and
in particular for the maxim of Quality which asks of the speaker not to
make claims he believes are false.

5.1. Announcements in stategic games

First let’s take a look at Game 1: a strategic game of pure coordination.

Game 1: coordination

L R

> 4,4 0,0

⊥ 0,0 2,2

A pair of simultaneous choices of actions/strategies forms a Nash
equilibrium – the standard solution concept used in game theory to
predict the actions of the agents –, if neither player can profitably
deviate, given the actions of the other player. Game 1 has two pure
Nash equilibria: (>, L) and (⊥, R). Although the first equilibrium is
preferred by both players – it is Pareto optimal – standard game theory
does not single it out as the unique solution of the game. Intuitively,
communication (an announcement by row-player, for instance) helps
here. We can add a round of pre-play communication to the game by
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extending the players’s strategies, and turning the strategic game into
an extensive one. Row player’s strategies are now not simply {>,⊥},
but rather {m>>,m>⊥,m⊥>,m⊥⊥}, where m> is the message that
she will play >. Column’s strategies are {LL, LR, RL, RR}, where ‘LR’,
for instance, means that she plays L if row-player announces m>, and
R if she announces m⊥. Unfortunately, even if we add to the game
such a round of communication, the announcement (or promise) of
the row-player that she will perform action > will not even elimi-
nate the non-optimal pairs (>, R) and (⊥, L) (or better (m>>, RR)
and (m>⊥, LL)) as possible solutions of the game. They will still be
counted as equilibria, because the column player can choose to ignore
the announcement, and the row-player can lie about her intentions.
Common wisdom, however, has it that in these circumstances, i.e., after
the announcement of m>, the Pareto optimal solution will be played.
Farrell (1988, 1992) and Myerson (1989) have proposed to refine the
equilibrium set of such games with communication by requiring that
announcements be credible: if the receiver believes what the signaller
says, it creates for the latter an incentive to fullfil the commitment.13

Row player’s announcement that she will play > now has the desired
effect, because her claim is credible in Farrell’s and Myerson’s sense.
Thus, unlike our use of the Nash-equilibrium solution concept, with this
refined equilibrium solution concept we can give a reason for why we
communicate in the first place, even if it does not directly affect payoffs.
Crucial for this solution is that messages have a literal, conventional
meaning.

For an example of a game in which communication about what will
be done is not in general credible, consider the prisoners’ dilemma,
where the players have the choice to cooperate or to defect:

Game 2: prisoner’s dilemma:

C D

C 2,2 0,4

D 4,0 1,1

In this game, the assertion of the row-player saying ‘I will cooperate’
is not credible: regardless of whether the message is believed, row-
player’s best response is still to defect and column-player knows this.

13 Farrell (1992) also gives an evolutionary motivation for why only credible com-
mitments make sense. In fact, many of the ideas that I will discuss in the context of
rational decision making are backed up with evolutionary analyses. I will leave the
enormous game theoretical literature on evolutionary analyses for what it is in this
paper.
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Let us denote by BRj(e) the best response of player j to action e played
by player i. Assume now that for every action e of player i there is a
corresponding message me which says that i is going to play e. Then
we can characterize as follows the self-committing announcements by
player i about which action she is going to perform:

(1) Message me is self-committing for player i, if e ∈ BRi(BRj({e}))

Thus, message me is self-committing for player i iff there is a Nash
equilibrium of the game in which player i plays e. In game 2, no an-
nouncement of row-player about which action she will perform has an
effect on which action column-player will choose. This is because D is
the dominant action for row (and column) player, and only this action
is self-committing.

Notice that the definition of a message as self-committing only makes
reference to the relationship between sending that message and follow-
ing through with that action, namely that the action must be optimal
for the sender, given that the receiver receives the message in good
faith and acts accordingly. The definition makes no reference to the
relationship between sending a message promising one action and doing
the other, e.g. that it be non-optimal. Thus, if we equate credibility of
a message with its being self-committing, it is predicted that, in order
to establish credibility, we don’t have to bother considering alternative
actions that the sender might intend to play, contrary to the message.

Aumann (1990), however, claims that this gives rise to problems in
certain kinds of games and Rabin (1990) proposes a stronger condition
for a message to be credible. Aumann argues that even in a game with
a unique Pareto optimal Nash equilibrium – as in Rouseau’s famous
Stag Hunt game described below – a message saying that the sender
will play her part of the Pareto optimal strategy profile cannot be taken
at face value.

Game 3: Stag Hunt:

S R

S 5,5 0,3

R 3,0 2,2

In this game there are two (strict) equilibria: both hunting Stag,
(S,S), and both hunting Rabbit, (R,R). Aumann (1990) argues that
although (S,S) is Pareto optimal in this game, the message ‘I will play
S’ is not credible. This is because both players have a strict preference
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over the other player’s actions that does not depend on the action the
player intends to play. Not only a player who intends to play S, but
also a player who intends to play R has an incentive to say ‘I will
play S’, which makes the message non-informative about the sender’s
intentions.

Aumann’s example suggests a stronger credibility requirement, one
that is indeed given by Rabin (1990). It must be the case that someone
who intends to play e strictly benefits from having his message me

believed over not having it believed. Also it must be that someone who
doesn’t intend to play e benefits from having me not believed over
having it believed. Using the terminology of Farrell & Rabin (1996),
a message is self-signaling if the speaker would want it to be believed
only if it is true. Assuming that me is the message saying that player
i will perform action e, this can be fomalized as follows:

(2) Message me is self-signaling for i if conditions 1 and 2 hold:
1 Ui(e, e′) > Ui(e, e′′) for e′ ∈ BRj(e) and e′′ 6∈ BRj(e)
2 Ui(f, e′′) > Ui(f, e′) : ∀f 6= e ∈ E, e′ ∈ BRj(e) and e′′ ∈ BRj(f)

(3) A message is credible if it is both self-signaling and self-committing.

Thus, a message me is self-signaling when the sender wants it to be
believed if and only if she is going to play the strategy signalled by
the message. Notice that although the claim ‘I will hunt Stags’ is self-
committing, it is not self-signaling and thus – at least according to
Aumann — not credible.

The examples discussed so far are represented as strategic games
where the messages correspond with the available actions. In the fol-
lowing sections we will think of the situations as a class of games of
incomplete information: signaling games. By doing so, we take, in a
sense, a broader perspective: we can now also discuss assertions not
corresponding with available actions.14 In fact, I will discuss only a
particular kind of signaling game: games where messages are costless
in the sense that they are payoff irrelevant.15

14 In another sense, however, our perspective will be more limited, for we ignore
situations where the speaker can choose a payoff relevant action himself.

15 See van Rooy (in press) for a discussion of signaling games with payoff relevant
messages. In that paper, these games are used as a foundation of Grice’s maxim of
Manner: it is explained why we use expensive signs to express marked meanings.
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5.2. signaling games

David Lewis (1969) was the first to talk about signaling games with pay-
off irrelevant messages, using them to explain conventional coordination
in language use. The simplest possible signaling game is formulated
as follows: One individual, the signaller, is informed of the value of
an uncertain parameter t (a situation, or world, but, in game theory,
normally thought of as the signaller’s type) and then chooses an action
m, referred to as a message. A second individual, the receiver, observes
this message (but not the value of t) and performs some action e. The
payoff to each individual depends only on the value of t and the action
e adopted by the receiver.

For simplicity I will assume that the strategies of sender and receiver
are functions from types to messages, and from messages to actions,
respectively. If T is the set of types, M the set of messages, and E the
set of actions, a sender-strategy S is thus an element of [T → M ] and
a hearer-strategy R is an element of [M → E].

Now we can discuss the effect and credibility of messages in signaling
games. Under the signaling game reformulation of game 1, for instance,
the column player does not know the type of the row player: if her type
is t she will play >; and if her type is t′ she will play ⊥. To determine
whether real communication is going on in such a signaling game, we
have to look at the equilibria of the game.

A strategy profile 〈S, R〉 with probability function P forms a Nash
equilibrium iff neither the sender nor the receiver can do better by uni-
lateral deviation. That is, 〈S, R〉 and P form a Nash equilibrium iff for
all t ∈ T the following two conditions are obeyed (where St = {t′ ∈ T :
S(t′) = S(t)} and U∗

2 (t, S,R) =
∑

t′∈St
P (t′/St)× U2(t′, R(S(t′)))):16

(i) ¬∃S′ : U1(t, R(S(t))) < U1(t, R(S′(t)))
(ii) ¬∃R′ : U∗

2 (t, S,R) < U∗
2 (t, S,R′)

Signaling games have many equilibria, but attention is mostly payed
to equilibria of a particular kind. We say that communication can occur
when there is a separating equilibrium, an equilibrium where different
types of senders send different messages. These equilibria are also sin-
gled out by Lewis (1969) as signaling systems. Although the messages
used in signaling games need not have a pre-existing, exogenously given
meaning, in a separating equilibrium we can still associate a meaning

16 Strictly speaking, this is not just a Nash equilibrium, but rather a perfect
Bayesian equilibrium, the standard equilibrium concept for sequential, or extensive
form, games with observable actions but incomplete information. In most of this
paper we are only interested in separating equilibria, and we can safely ignore the
probability function.
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with these messages. The meaning a message can acquire must emerge
solely from the strategic interaction between sender and receiver. If
sender strategy S is part of a separating equilibrium, we might say that
message S(t) means t. Notice, however, that in a two-type two-message
situation there might already be 2 separating equilibria. For this reason,
we don’t want to concentrate so much on one particular equilibrium and
what the particular messages mean in this equilibrium, but rather on
whether separating equilibria exist. If there is no separating equilibrium
in a game with two-types, no communication is possible.

Now we want to analyze the games discussed in section 5.1 from a
signaling perspective. To do so for game 1, for instance, we first turn the
single game into two subgames: one (in t) where both individuals know
that row-player will play >, and one (in t′) where both individuals
know that row player will play ⊥. Via Harsanyi’s method, we then
turn this set of games into a single game of incomplete information by
assuming that the column player’s probability function over the states
is commonly known. Communication is possible in the signaling game
reformulation of the game if there exists a separating equilibrium. As
it turns out, this is the case for game 1, because row’s preferences over
column’s beliefs are correlated with her intentions, i.e. with the truth.
Reformulations of the prisoner’s dilemma and the Stag Hunt game show
that, when this condition is given up, costless communication can not
occur. In the Stag Hunt game, for instance, the speaker wants the hearer
to think that she is of type t that hunts Stag: she wants the hearer to
hunt Stag no matter what her type is.

Stag Hunt:

S R

t 5,5 0,3

t′ 3,0 2,2

But this means that there can be no communication, i.e., there is
no separating equilibrium because senders of type t′ don’t want to
distinguish themselves from senders of type t.

For the simple cases that we have considered so far – strategic sit-
uations with two types of senders and where the receiver can choose
between two actions – we can show that credible communication is
possible in very specific situations only (see Gibbons, 1992). Consider
the following abstract table:
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two-type, two-action:

eH eL

tH x, 1 z, 0

tL y, 0 w, 1

It is easy to see that in this two-type, two-action situation, communi-
cation (i.e. a separating equilibrium) is possible only in case x ≥ z and
y ≤ w. We can check this by looking at the other possible cases: (i)
if z > x and y > w the preferences are strictly opposed. No commu-
nication is possible now, because tH would like the hearer to believe
that his type is tL, and the other way around for a sender of type tL.
Thus the signaling game will have no Nash equilibrium; (ii) if x > z
and y > w (or if z > x and w > y) both types of sender prefer the same
action of the receiver: in our example both prefer action eH to action
eL. No communication will take place in this case either, because both
players want the receiver to believe that her type is tH . This game
is the same as the Stag Hunt game, in which we already saw that no
communication was possible. We can conclude that in the simplest two-
type, two-action situations, costless communication is possible only in
case the preferences are perfectly aligned.17,18

5.3. Credibility: conventional and speaker’s meaning

Until now we have assumed that a message used by a sender in a
signaling game is just an element of M , but we have not determined
what the elements of M are or mean. In fact, we didn’t have to: our
analysis was not dependent on the ‘meanings’ of the messages, but only
on whether two messages are the same or not. But, of course, we could
assume with Farrell, Myerson, and Rabin that messages have a (pre-
existing) conventional meaning. Suppose that ‘[[·]]’ is an exogenously
given interpretation function mapping messages to their meanings, i.e.
propositions, subsets of T . In that case we might make for each t ∈ T

17 Watson (1996) notes, however, that this conclusion is based on the assumption
that only the receiver is uninformed. Something different happens if the receiver
also has a type, which then the sender is uninformed of. In that case the receiver
can pretend that the preferences are more aligned, and the sender will give more
information than he would if he had perfect information. Thus, in a fully revealing
equilibrium, the receiver may prefer the sender to be confused.

18 This result, and others discussed in this paper, suggests that in zero-sum games,
no credible communication is possible between rational agents. This seems to be bad
news for Merin (1999), who bases his analysis on the hypothesis that language users
are crucially engaged in zero-sum games. Fortunately, almost none of the results he
employs to account for specific phenomena crucially makes use of this hypothesis.
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the following distinction between conventional meaning and speaker’s
meaning (see Grice, 1967) if the speaker adopts sender strategy S.

(4) a. The conventional meaning of S(t) is [[S(t)]]

b. The speaker’s meaning of S(t) is St = {t′ ∈ T : S(t′) = S(t)}

The intuition behind the notion of speaker’s meaning is that if a
player sends different messages at different states, a hearer should
be able to differentiate these states. In a state t, a receiver not only
learns the information content of communicated message [[S(t)]], but
also takes into account what the sender would have revealed in other
states.19 Thus, when the receiver knows the communication strategy
of the sender, she learns not only the literal content of the message,
but also something more. Notice that the intersection [[S(t)]] ∩ St

can, in principle, be empty. Thus, if we call [[S(t)]] ∩ St the commu-
nicated meaning of S(t), we are basing this notion of meaning on a
convention of truthfulness (cf. Lewis, 1969). Assuming that senders
know their type,20 this means that truthfulness depends on the no-
tion of credibility discussed earlier. In particular, the expectation that
[[S(t)]] ∩ St 6= ∅ depends on the assumption that all messages that are
sent are self-signaling.

In terms of exogenously given conventional meanings of messages,
we can formalize the self-signaling condition for signaling games that
we discussed earlier for strategic form games.21 This formalization is
based on the (temporary) simplifying assumption that messages are
used to uniquely single out the type of the sender. We say, for instance,
that mt is the message stating that the sender is of type t.

(5) Message mt is self-signaling for i if conditions 1 and 2 hold:
1 Ui(t, e) > Ui(t, e′) for e ∈ BRj(t) and e′ 6∈ BRj(t)
2 Ui(t′, e′) > Ui(t′, e) : ∀t′ 6= t ∈ T, e ∈ BRj(t) and e′ ∈ BRj(t′)

19 Note that, in a fully separating equilibrium, St will always be {t}. Later,
however, we will discuss situations where St is not necessarily so trivial.

20 Until now we have assumed that the sender knows which state she is in. How-
ever, we might relax this assumption. Suppose that K is an epistemic accessibility
relation between states and that the sender knows in t that she is in one of the states
K(t). Then the speaker’s strategy depends not on the state she is in, but rather
on what she knows: for all t, t′ ∈ T , if K(t) = K(t′), then S(K(t)) = S(K(t′)).
In computer science it is commonly assumed that a protocol is a function from
information states to actions (cf. Parikh & Ramanujam, this volume). Thus, we
might think of communication protocols as special kinds of sender strategies.

21 Notice that the self-committing condition doesn’t make much sense now,
because the row-player has no payoff relevant action to choose anymore.
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The first part of definition (5) says that if player i is of type t, then
she prefers mt to be believed so that player j plays her optimal action
in t and not some other action e′. The second condition states that
player i wants her message to be believed (the other player plays a
best response against it) only if she is of the type announced in the
message. Let us say that in signaling games a message is credible if and
only if it is self-signaling. We see that, in a two-type situation, we have
a separating equilibrium iff there is at least one credible message mt.

With Lewis (1969) we can say that, in a particular game-theoretical
situation, the speaker intends to communicate St with his use of sig-
nal S(t). Note that this can be accounted for without assuming any
mention of the (conventional) meaning of the signal at all. It seems not
unnatural to call what the speaker intends to communicate with the use
of a signal its ‘speaker’s meaning’, discussed a lot in the philosophical
literature. But how can the hearer recognize what the speaker meant?
If she assumes that the sender is using strategy S because it is part of
the (unique) most salient Nash equilibrium then she can calculate St.
And indeed, for a signal to have a meaning, the hearer has to (be able
to) recognize what the speaker intends.22

Earlier in this paper I discussed the semantics and pragmatics of nat-
ural language with respect to primacy. We have seen that the semantic
notion of entailment can be reduced, to a large extent, to the pragmatic
notion of usefulness. In this section, however, we suddenly assumed
the existence of an exogenously given semantic interpretation function,
suggesting that the semantic notion of conventional meaning cannot be
reduced to the pragmatic notion of speaker’s meaning. However, Lewis’s
(1969) work on signaling games strongly suggests the logical priority of
the latter notion: speaker and hearer can coordinate their behavior with
the help of signals without them having pre-existing conventional mean-
ings. In fact, Lewis thinks of the conventional meaning of expressions
as the result of solutions of recurrent coordination problems. Typical
(recurrent) coordination problems out of which conventional meanings
arise are as simple as ‘for object x in the world, how can a speaker
talk about it such that the hearer can understand?’. This suggests that
the conventional meaning of an expression must be relatively general,
and leaves the actual interpretation of the use of the expression in a
concrete situation underspecified. In fact, as stressed by Clark (1996)
and others, this is yet another argument in favor of the logical priority
of speaker’s meaning: the actual interpretation depends not only on the

22 See Prashant Parikh (2001) for a more extensive discussion of the notion of
‘speaker’s meaning’ from a game-theoretical perspective.
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conventional meaning of an expression, but also on intentions, beliefs,
and preferences of the participants involved in the conversation.

6. Quantity of information exchange

In the previous section we only discussed situations with two types.
Communication is possible in such signaling games just in case there
is a separating equilibrium. In situations with more types and more
actions, however, we have more interesting alternatives. In these cases,
communication is possible even when not every type sends a different
message. For these situations the following question arises: With what
degree of fine-grainedness can a speaker credibly reveal her type?

In an important article, Crawford & Sobel (1982) show that the
amount of credible communication depends on how far the preferences
of the participants are aligned. They show that when the preferences are
more aligned, more communication can occur through costless signal-
ing. They construct utility functions for sender and receiver such that
the equilibria in such games are partition equilibria; i.e., the type set can
be partitioned into a finite number of sets such that types belonging to
the same set send a common message and receive the same action. The
more fine-grained this partition is, the more communication is possible,
and the fine-grainedness of the partition depends on the extent to which
the preferences are aligned.

Crawford & Sobel work with continuous type, message, and action
spaces. The idea behind their analysis does not depend on this, however.
Consider first the following two-type, two action game.

Game 4:

e1 e2

t1 1,1 0,0

t2 0,0 1,1

This game obviously gives rise to the partition equilibrium {{t1}, {t2}}
with best replies {{e1}, {e2}}.

Now consider a game with more than 2 actions involved:

Game 5:

e1 e2 e3

t1 3,3 1,0 2,2

t2 1,0 0,3 2,2
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Suppose that column-player takes both types to be equally likely. In
that case he will choose e3, because that has, on average, the highest
utility. Notice that if the speaker is of type t1 and can convince the
column-player that she is of type t1, action e1 will be chosen which is
favourable for both. Unfortunately, however, the claim ‘I am of type t1’
cannot be believed: although the receiver’s best response to this claim is
action e1, BR(‘I am t1’) = e1, which is the one that the sender prefers,
someone of type t2 doesn’t want to distinguish herself from someone
of type t1 (she wants column-player to be unclear whether row-player
is of type t1 or of type t2, in which case she gets a payoff of 2, which
is the best she can expect) and thus would send the same message.
If the sender of type t2 reveals her type, the receiver would play e2,
which is the worst for the sender. Thus, there can be no information
transmission going on: nobody would say ‘I am t2’, and the receiver
cannot trust the claim ‘I am t1’. As a result, they will send the same
message in equilbrium. An equilibrium in which all individuals send
the same message is called a pooling equilibrium. Notice that this case
is somewhat different from the ones talked about before, because now
a third action e3 is in play. This action will be chosen by the receiver.

The following game is somewhat more complex.

Game 6:

e1 e2 e3 e4

t1 4,4 1,1 0,0 3,3

t2 1,1 1,4 0,0 3,3

t3 0,0 0,0 3,4 0,0

Just as in the previous game, here type t1 individuals cannot dis-
tinguish themselves from type t2 individuals through costless signaling.
Recall our definition (5) of self-signaling given earlier:

(5) Message mt is self-signaling for i if conditions 1 and 2 hold:
1 Ui(t, e) > Ui(t, e′) for e ∈ BRj(t) and e′ 6∈ BRj(t)
2 Ui(t′, e′) > Ui(t′, e) : ∀t′ 6= t ∈ T, e ∈ BRj(t) and e′ ∈ BRj(t′)

Notice that mt1 is not self-signaling for the second reason, because
there are t 6= t1 and e ∈ BRj(t), namely t2 and e2, such that Ui(t2, e2) ≤
Ui(t2, e1). Message mt2, on the other hand, is not self-signaling for the
first reason: Ui(t2, BRj(t2)) = Ui(t2, e2) < Ui(t2, e4). In fact, only mt3

is self-signaling according to (5). However, individuals of type t1 and
t2 should intuitively be able to distinguish themselves form t3 -type
individuals. To account for this intuition, we have to generalize the
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above definition. Instead of talking about types, we should rather talk
about sets of types (in the following, S(t) stands for [[S(t)]]):23

(6) Message S(t) is self-signaling for i if conditions 1 and 2 hold:
1 ∀t′ ∈ St : Ui(t′, e) > Ui(t′, e′) if e ∈ BRj(S(t)) & e′ 6∈ BRj(S(t))
2 ∀t′ 6∈ St : Ui(t′, e′) > Ui(t′, e) if e ∈ BRj(S(t)) & e′ ∈ BRj(S(t′))

Now we see that the message I am either of type t1 or t2 is self-signaling:
if i ∈ {1, 2, 4}, then (i) U1(t1, ei) > U1(t1, e3) and U1(t2, ei) > U1(t2, e3),
and (ii) U1(t3, e3) > U(t3, ei).

Notice that the above definition depends on strategy S. Let us now
say that a game is self-signaling with respect to sender-strategy S
if each t ∈ T : S(t) is self-signaling. On our assumption that S
is a function from types to messages, this definition of self-signaling
gives rise to partitions of both the types and the actions in BR(T ): (i)
although [[S(t)]] might have a non-empty intersection with [[S(t′)]] if
t 6= t′, it will be the case that St and St′ are either the same or have
no element in common. Thus, S gives rise to partition {St : t ∈ T};
(ii) the conditions on self-signaling have the effect that ∀t, t′ : S(t) 6=
S(t′) → BR([[S(t)]]) ∩BR([[S(t′)]]) = ∅.

In the last example we have a (non-trivial) partition equilibrium –
{St : t ∈ T} = {{t1, t2}, {t3}} with as the set of corresponding best
replies {{e1, e2, e4}, {e3}} –, but one that is not completely separating.
In equilibrium, it makes no sense for individuals of type t1 and type
t2 to send different messages, although they send a different message
than an individual of type t3. An equilibrium of this type is called a
partial pooling equilibrium.

Notice that there might be more than one game and sender-strategy
pair that is self-signaling. In game 6, for instance, also sender-strategy
S′ that assigns to each type the same message satisfies (trivially) the
above condition. (This is in correspondence with the fact that costless
signaling games always have a pooling equilibrium.) It seems obvious,
however, that sender-strategy S is in this game preferred to strategy
S′: more information is transmitted via this strategy. This gives rise
to the following idea: the expected sender-strategy is the self-signaling
one that gives rise to the finest partition of the types.24

23 Where BRj([[S(t))]]) is the set of actions that are best responses given some
beliefs consistent with [[S(t)]]. Thus, we look not at one, but rather at a set of Nash
equilibria now. Each of e1, e2 and e4 are in BRj({t1, t2}), for instance, because there
is a probability function that makes e1 the optimal response given {t1, t2} (if t1 is
taken to be more likely), but also ones that makes e2 or e4 optimal.

24 I believe that this comes down to, and is certainly inspired by, the PCI condition
of Blume et al. (2001). However, they don’t relate it to self-signaling. The reason
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The question of how much communication can be expected in sig-
naling games can now be answered by determining how fine-grained
the partition-equilibrium will be. Just as in Crawford & Sobel (1982),
the fine-grainedness of the partition depends on how far the preferences
of sender and receiver are aligned. Note that this affects the decision
which question to ask and the expectation which answer to anticipate:
it doesn’t make much sense to ask a question that gives rise to a finer
partition than the one that self-signaling induces.

7. Conclusion

In the first part of this paper we discussed the value, or relevance, of
questions and assertions by relating them to decision problems. In the
second part we investigated under which circumstances, and with how
much credibility, information can flow between the participants of a
dialog. Throughout the paper I have (more or less explicitly) related
these decision and game theoretical issues with Gricean concerns for
natural language analysis. First, we have shown how the knowledge
of strategies of conversational agents in signaling games can be used
to determine what is meant by the speaker of an expression with a
conventionally non-existing, or underspecified, meaning. Second, by
making use of standard decision theoretic methods, it became clear
how we can determine the quantity of relevant information given in
an assertion and asked for in a question. This enables us to give a
much more accurate formalization of Grice’s maxims of quantity and
relevance than normally assumed. But perhaps the most important
result of this paper was reached in the final sections: it showed the
limitation of Grice’s most basic assumption: his cooperative principle.
Where Grice (1967) appeals to rationality to motivate his assumption
that speakers are fully cooperative language users, our discussion rather
suggests that, as far as rationality is concerned, they can be expected
to be cooperative only in so far as their preferences are (known to be)
aligned. Notice that especially with respect to the second and third
issue, decision and game theory are found to be useful not only to
think of language use from a broader and conceptually more appealing
perspective than usually, but also because some decision and game
theoretical results (e.g. those of Blackwell and Crawford & Sobel) are
shown to be of direct relevance to semantic/pragmatic concerns.

This paper does not stand alone. It is part of the growing decision
and game-theoretical literature on language use (eg. P. Parikh (1991,

behind this, I guess, is that they want to state their PCI condition independently of
the assumption that messages have a pre-existing meaning.
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2001), R. Parikh (1994), Merin (1999), Asher et. al. (2001), and van
Rooy (2003, in press)) which promises to shed new light on existing
problems. In contrast to this more general paper, in most of the others,
decision and game theory are used to analyze some more particular
phenomena. These papers make use of a shared set of analytical tools.
More importantly, however, they also share an important methodolog-
ical assumption: the primacy of pragmatics with respect to natural
language semantics.
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