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Abstract

In a previous paper (see ‘Tolerant, Classical, Strict’, henceforth
TCS) we investigated a semantic framework to deal with the idea that
vague predicates are tolerant, namely that small changes do not affect
the applicability of a vague predicate even if large changes do. Our ap-
proach there rests on two main ideas. First, given a classical extension
of a predicate, we might define a strict and a tolerant extension depend-
ing on an indifference relation associated to that predicate. Second,
we can use these notions of satisfaction to lead to mixed consequence
relations that capture non-transitive tolerant reasoning. The present
paper intends to explore the possibility of defining mixed notions of
consequence in a super/sub-valuationist setting and see to what ex-
tent any of these notions captures non-transitive tolerant reasoning.

1 Introduction

Take a (long enough) series 〈a1, a2 . . . an〉 of patches of color. The first is
clearly red and the last is clearly orange (and so, not red). However, each
patch in the series is only imperceptibly different in color from its successor,
so that an indifference relation holds between any adjacent patches in the
series. This relation is, we take it, reflexive, symmetric but not transitive.
Vague expressions such as ‘red’ seem to be tolerant in the sense that a small
enough difference in the color of the patches cannot affect the applicability
of the predicate, even if big enough differences do. In this sense, if we take
any two adjacent patches from our series a and b, it seems that from the
fact that a is red we can confidently conclude that b is red as well. We can
construct the following step-by-step sorites argument:
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a1 is red
a1 is only imperceptibly different from a2

Therefore: a2 is red

a2 is red
a2 is only imperceptibly different from a3

Therefore: a3 is red

...

an−1 is red
an−1 is only imperceptibly different from an
Therefore: an is red

These arguments, however, can be classically joined together so that the
following argument is also valid:

a1 is red
a1 is only imperceptibly different from a2

a2 is only imperceptibly different from a3

...

an−1 is only imperceptibly different from an
Therefore: an is red

Another way to look at the tolerance of vague predicates is by directly
considering a formulation of the tolerance principle:

(T) ∀x∀y(P (x) ∧ xIP y → P (y)), where IP expresses the P -relevant in-
difference relation.

However, the tolerance principle classically entails that all members of
the series are red, contradicting the fact that the last is orange. Due to this
fact and the previous soritical argument, an important group of solutions to
the sorites paradox consists in rejecting the tolerance principle along with
tolerant reasoning broadly considered. For example, for the epistemicist the
tolerance principle is false and, in fact, there is a last item in our series
that is red followed by a non-red item. For some philosophers endorsing a
many-valued semantics (such as Kleene’s strong three-valued logic, K3) the
tolerance principle is not true (though not false either); for others, such as
supervaluationists, the tolerance principle is in fact false although there is no
falsifying instance. Further, K3 semantics and supervaluationist semantics
do not allow for tolerant reasoning since it is not the case that from the fact
that a and b are similar enough in P -relevant respects and a is P , it logically
follows that b is P (since a might be P -similar to b and truly P while b is
not truly P ).
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In TCS we develop a semantic framework originally proposed by van
Rooij (2010) in order to accommodate the idea that vague predicates are
tolerant. The basic idea is that the semantics of a vague predicate P can
be made sensitive to the P -relevant indifference relation. A tolerant first-
order model 〈D, I,∼〉, is a classical first-order model 〈D, I〉 expanded with
a function ∼ that maps every predicate of the language to a binary relation
∼P that is symmetric and reflexive (but possibly non-transitive). Classical
satisfaction in a tolerant model 〈D, I,∼〉 is defined as classical satisfaction
in 〈D, I〉; classical validity in a tolerant model is defined accordingly as
classical satisfaction in every tolerant model. Now we define, for tolerant
models, the dual notions of tolerant and strict satisfaction making use of
classical satisfaction and indifference relations. A sentence Pa is tolerantly
true in a tolerant model M (in symbols: M �t Pa) iff there is an x such that
a ∼P x and Px is classically true; a sentence Pa is strictly true in a model
M (in symbols: M �s Pa) iff for every x if a ∼P x then Px is classically
true. We extend the notion of tolerant and strict satisfaction to arbitrary
formulae by simultaneous induction; in particular M �t ¬ϕ iff M 2s ϕ and
M �s ¬ϕ iff M 2t ϕ (so that ‘�t’ and ‘�s’ are duals).1

An interesting feature of this semantics is that the tolerance principle (T)
is tolerantly valid. In TCS we show that the logics obtained by defining log-
ical consequence as preservation of strict truth and preservation of tolerant
truth, coincide (for the classical vocabulary without identity), respectively,
with strong Kleene logic (K3) and its dual, Priest’s Logic of Paradox (LP).
Though we might endorse the tolerance principle given tolerant satisfaction,
we argue in TCS that the logic resulting from the definition of logical con-
sequence as preservation of tolerance truth (that is, LP) does not provide
an adequate framework; in particular, modus ponens is not an LP-valid rule
of inference. So we consider the notions of logical consequence resulting of
mixing any of our three notions of satisfaction. It turns out that the notion
of logical consequence that goes from strictly true premises to a tolerantly
true conclusion (we call it st-entailment: �st) leads to a non-transitive logic
in which the tolerance principle is valid and where both modus ponens and
the deduction theorem hold. This notion of logical consequence, we take it,
provides a nice framework in which we can provide a tolerant solution to
the paradox. Let IP express in the language the similarity relation ∼P . We
have that Pa, aIP b �st Pb, but Pa1,∀xaiIPai+1 2st Pan (for 1 ≤ i < n) for
a large enough n. So, although each step in the argument is st-valid, the
result of joining all the steps together is not st-valid.

As mentioned above, tolerant and strict satisfaction lead, when we con-
sider unmixed consequence, to K3 and LP respectively. These logics bear
an analogy to supervaluationist and subvaluationist logics: both K3 and

1See TCS sec. 1.4 for a full description of the semantics.
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supervaluationist logic are paracomplete, and LP and subvaluationist logic
are their paraconsistent duals.2 Interestingly, supervaluationism (subvalua-
tionism) is weakly paracomplete (paraconsistent) in the sense that classical
validities (contradictions) are supervaluationistically valid (subvaluationisti-
cally unsatisfiable). The aim of the present work is to extend the research on
tolerance and mixed consequence to the super- and subvaluationist setting
(the s’valuationist setting, for short) in order to compare how many of our
previous results can be transposed to this new framework. More specifically,
the work aims to address the following questions:

1. What are the relations between the different notions of logical con-
sequence (pure or mixed) that we might define in an s’valuationist
setting? (that is, the notions of logical consequence that we might
define out of supertruth, subtruth and a suitable analogue of classical
truth)

2. How can we connect indifference relations s’valuationist semantics and
to what extent can we use this connection to provide a tolerant solution
to the sorites paradox?

3. What are the similarities/differences between this and our previous
approach? Is there any definitive advantage of one approach over the
other?

The present discussion is concerned with the language of first-order logic.
For simplicity we will focus on languages with just monadic predicates, con-
stants and without identity or other polyadic predicates. We aim to compare
the different logics with respect to different languages. Our “restricted vo-
cabulary” is an ordinary first order language (again, without identity or
other polyadic predicates); our “full vocabulary” includes in addition a bi-
nary similarity predicate IP for each monadic predicate P in the language.
The predicates IP will express the similarity relations ∼P ; as we will see,
the relations between various notions of consequence are sensitive to the
presence or absence of these IP predicates.3 Many results in TCS transpose
to the s’valuationist setting; in order to appreciate this fact (but also to see
when new twists occur) in brackets we make systematic cross-reference to
the corresponding results in our previous paper.

2A consequence relation �x is paracomplete iff there are A, B such that B �x {A,¬A}
does not hold, and paraconsistent iff there are A, B such that {A,¬A} �x B does not
hold.

3After Lemma 2 below we make use of a modality to illustrate a small remark concern-
ing this lemma; however, we do not consider modalities as part of the full vocabulary, at
least in this paper.
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The structure of the paper is as follows. Section 2 briefly introduces
s’valuationist models (S-models) along with three notions of satisfaction:
supertruth, local truth and subtruth. Section 3 deals with mixed conse-
quence in a s’valuationist setting. In the first place we characterize the re-
lations between the different logics for the restricted vocabulary (subsection
3.1). Then we propose how to interpret similarity relations in the present
framework and spell out the relations between logics for the full vocabulary
(subsection 3.2). We close our discussion by briefly considering tolerance
and the sorites in the present framework and a comparison with our pre-
vious proposal (subsection 3.3). The appendix provides a tableau-based
system to check for any of the notions of logical consequence discussed in
this paper.

2 Supertruth, local truth and subtruth

Supervaluationism and subvaluationism agree on the idea that a vague ex-
pression can be made precise in several ways consistent with the use we make
of it. These theories disagree, however, on what it takes for a sentence to
be true. An admissible precisification is a classical model respecting some
constraints depending on the meaning of expressions, like analytic relations
between expressions (nothing is counted both as a child and as a baby) and
comparative relations (nothing taller than x is counted as not tall in a pre-
cisification where x is counted as tall). According to supervaluationism a
sentence is true (supertrue) just in case it is true in every admissible pre-
cisification; thus vagueness amounts to some form of underdetermination of
meaning. According to subvaluationism a sentence is true (subtrue) just in
case it is true in some admissible precisification; thus vagueness amounts to
some form of overdetermination of meaning. It is clear from the previous
informal remarks that we can construct s’valuationist models out of classical
models:

A classical model is a tuple M = 〈D, I〉 such that:

• D is a non-empty domain of individuals and

• I is an interpretation function for the non-logical vocabulary mapping
constants to individuals in D and predicates to subsets of D.

Following a standard definition of classical satisfaction, we write M � ϕ
to mean that ϕ is classically true in M .

An s’valuationist model M is a non-empty set of admissible classical
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models4 where for any two models M = 〈D, I〉 ∈M and M ′ = 〈D′, I ′〉 ∈M :

• D = D′ and

• I(c) = I ′(c) for every constant c.

In order to define an analogue of classical satisfaction we will further
consider “S-models” 〈M ,M〉 in which M ∈M (M can be thought of as a
kind of designated model in M ). It is convenient for reasons of notation to
use the index p for supertruth and b for subtruth even if this is not standard
usage.

Definition 1.
Supertruth: A sentence ϕ is supertrue in an S-model 〈M ,M〉, (written
M ,M �p ϕ) iff for all M ′ ∈M , M ′ � ϕ.
Local truth: ϕ is locally true in an S-model 〈M ,M〉, (written M ,M �l ϕ)
iff M � ϕ.
Subtruth: A sentence ϕ is subtrue in an S-model 〈M ,M〉, (written M ,M �b

ϕ) iff for some M ′ ∈M , M ′ � ϕ.

These notions of satisfaction resemble our previous notions of strict,
classical and tolerant satisfaction respectively. In the first place, �l is self-
dual in the sense that for any sentence and S-model M ,M �l ϕ iff M ,M 2l
¬ϕ while �p and �b are duals since M ,M �p ϕ iff M ,M 2b ¬ϕ (and
M ,M �b ϕ iff M ,M 2p ¬ϕ). In the second place, each notion sets different
standards for satisfaction. It is harder for a sentence to be supertrue in an
S-model than to be locally true and it is harder to be locally true in an
S-model than to be subtrue, as is stated in the following easy lemma:

Lemma 1 (Compare TCS Lemma 1). For any S-model 〈M ,M〉 and any
sentence ϕ, M ,M �p ϕ⇒M ,M �l ϕ⇒M ,M �b ϕ

Proof. If every ϕ is true in every model in M , then it is certainly true in
M and so M ,M �l ϕ. In turn, if ϕ is true in M then certainly there is at
least an M ′ in M at which ϕ is true.

A vague interpretation (in the present context) is an interpretation where
some sentences are neither supertrue nor superfalse; equivalently, a vague
interpretation is an interpretation where some sentences are both subtrue
and subfalse. Thus, a vague interpretation is a supermodel M that contains

4Fine’s presentation of supervaluationism (Fine (1975)) is different from the present one
in that he starts out from a partial model and defines a supermodel as a set containing
that model and all its classical extensions. However, when one considers admissibility
constraints the partial model drops out of the picture (Kremer and Kremer, 2003, 234).
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at least two distinct classical models (two models that disagree in the inter-
pretation of some of the predicates). Accordingly, a precise interpretation
is a supermodel containing just one classical model. Naturally, local truth,
supertruth and subtruth coincide for precise interpretations.

Since the restricted vocabulary cannot see what is going on in models
different from the designated model, any S-model can be reduced to a precise
S-model which is equivalent over the restricted vocabulary with respect to
local satisfaction; in this new S-model, in turn, local truth, supertruth and
subtruth coincide.

Lemma 2 (Compare TCS Lemma 2). Let 〈M ,M〉 be an S-model. Let
〈M ′,M〉 be the model obtained from 〈M ,M〉 and taking M as the sole model
in M . Then for every sentence ϕ in the restricted vocabulary, M ,M �l ϕ
iff M ′,M �l ϕ iff M ′,M �p ϕ iff M ′,M �b ϕ.

Proof Sketch. By induction, in the restricted vocabulary, whether M ,M �l

ϕ depends just on the modelM in M . Thus, S-models 〈M ,M〉 and 〈M ′,M〉
are �l-equivalents. Since M ′,M contains a single model, any sentence ϕ will
be true in every model, just in case it is true in some model, just in case it
is true in M .

The lemma is clearly linked to the restricted vocabulary. If we allow
expressions that can see what is going on in other models, S-models 〈M ,M〉
and 〈M ′,M〉 might cease to be �l-equivalents. For example, define for any
S-model 〈M ,M〉: M ,M �l �ϕ just in case for all M∗ ∈M , M∗ � ϕ. The
sentence ϕ ∧ ¬�ϕ will be true in some S-models 〈M ,M〉, but false in any
precise model.

3 Mixed consequence

The consequence relation corresponding to preservation of local truth in
every model is, in the restricted vocabulary, classical logic. In turn, preser-
vation of supertruth and preservation of subtruth lead to supervaluationist
logic and subvaluationist logic respectively. However, in addition to pure
forms of logical consequence, we might consider the notions of consequence
resulting of mixing different notions of satisfaction. In section 3.1 we study
the relation between possible combinations of logical consequence for the
restricted vocabulary. In section 3.2 we introduce similarity relations and
work out the relations between the different logics for a language contain-
ing similarity predicates. First of all, a structured way to talk about these
consequence relations:
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Definition 2. Γ �mn ∆ just in case for every S-model M ,M : if ∀γ ∈
Γ,M ,M �m γ then ∃δ ∈ ∆,M ,M �n δ.

So, for example, �pp is supervaluationist consequence, �bb is subvalua-
tionist consequence and �ll is classical consequence (at least for the restricted
vocabulary). However, we can also consider mixed versions as, for example,
�pb that preserves a subtrue conclusion from supertrue premises.

As pointed out before, �p and �b are dual notions of satisfaction while �l

is self-dual. We define now more generally the notion of dual for consequence
relations and point out this relation between our nine notions of logical
consequence.

Definition 3 (Dual consequence relation). Let �x be a notion of logical
consequence. Its dual is the notion of logical consequence �y such that:
Γ �x ∆ iff ¬(∆) �y ¬(Γ) (where ¬(∆) = {¬δ | δ ∈ ∆})

These are the resulting duality relations:

1. �ll, �pb and �bp are self-dual.

2. �pp and �bb are duals.

3. �pl and �lb are duals.

4. �lp and �bl are duals.

3.1 The restricted vocabulary

Lemma 3 (Compare TCS Lemma 7). For any m: �bm⊆�lm⊆�pm and
�mp⊆�ml⊆�mb.

Proof. Since we know that, for any S-model 〈M ,M〉, {ϕ : M ,M �p ϕ} ⊆
{ϕ : M ,M �l ϕ} ⊆ {ϕ : M ,M �p ϕ} (Lemma 1), it follows that if
an S-model 〈M ,M〉 is a pm-counterexample to an argument, it is also
an lm-counterexample, and if it is an lm-counterexample, it is also a bm-
counterexample. Similarly, if a model is an mb-counterexample to an argu-
ment, it must also be anml-counterexample, and if it is anml-counterexample,
it must also be an mp-counterexample.

The lemma is based directly on the definitions of satisfaction and it holds
for the full vocabulary as well. This lemma answers some questions regarding
the relation between our nine notions of consequence. We complete the
picture for the restricted vocabulary.

a) �ll=�pl=�lb=�pb
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Lemma 4 (Compare TCS Lemma 8). Γ �pb ∆⇒ Γ �ll ∆

Proof. Assume Γ 2ll ∆, then:
There is an 〈M ,M〉 s. t. ∀γ ∈ ΓM ,M �l γ and ∀δ ∈ ∆M ,M 2l δ

⇓ (by Lemma 2)

There is an 〈M ′,M〉 s. t. ∀γ ∈ ΓM ′,M �p γ and ∀δ ∈ ∆M ′,M 2b δ

Lemma 3 tells us that �ll⊆�pb and so �ll=�pb. The same lemma states
that �ll⊆�pl⊆�pb and �ll⊆�lb⊆�pb so �ll=�pl=�lb=�pb.

b) �pp and �bb are distinct and strictly weaker than �ll

Note that ∅ 2pp {p,¬p} but ∅ �bb {p,¬p} and, dually, {p,¬p} 2bb ∅ but
{p,¬p} �pp ∅. So neither consequence relation contains the other. Now
{p,¬p} �ll ∅ and ∅ �ll {p,¬p} and so if �pp and �bb are both weaker than
�ll, they are strictly weaker.

Lemma 5. Γ �pp ∆⇒ Γ �ll ∆ and Γ �bb ∆⇒ Γ �ll ∆

Proof. Assume Γ 2ll ∆, then:
There is an 〈M ,M〉 s. t. ∀γ ∈ ΓM ,M �l γ and ∀δ ∈ ∆M ,M 2l δ

⇓ (by Lemma 2)

There is an 〈M ′,M〉 s. t. ∀γ ∈ ΓM ′,M �p γ and ∀δ ∈ ∆M ′,M 2p δ

(and similarly for the second claim)

c) �lp is strictly weaker than �pp and �bl is strictly weaker than
�bb

From Lemma 3 we have that �bl⊆�bb and �lp⊆�pp. Unlike �pp and �bb,
however, �bl or �lp are not reflexive (since a formula might be subtrue in a
model without being locally true in that model, and similarly for �lp).

d) �bp is strictly weaker than both �bl and �lp

From Lemma 3 we have that �bp⊆�bl and �bp⊆�lp. To see that the
inclusion is strict notice that ∅ �bl {p,¬p} but ∅ 2bp {p,¬p} and {p,¬p} �lp

∅ but {p,¬p} 2bp ∅. However, �bp is not the empty relation, since, for
example, ∅ �bp {p ∧ ¬p}. In fact, �bp is the weakest consequence relation
preserving the validity of classical tautologies and the unsatisfiability of
classical contradictions:

Lemma 6 (Compare TCS Lemma 9). Γ �bp ∆ iff either Γ �bp ∅ or ∅ �bp ∆.
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Proof. For the right to left direction note that if Γ �bp ∅ then Γ �bp ∆ and
if ∅ �bp ∆ then Γ �bp ∆.

For the left to right direction, assume that Γ 2bp ∅ and ∅ 2bp ∆ for
some Γ and ∆. If both Γ and ∆ are empty then it is clear that Γ 2bp ∆.
So assume that at least one is non-empty. Construct an S-model 〈M ,M〉
following these rules:

• For each γ ∈ Γ include a classical model Mγ in M such that Mγ � γ
(the fact that Γ 2bp ∅ guarantees that there is such a model).

• For each δ ∈ ∆ include a classical model Mδ in M such that Mδ 2 δ
(the fact that ∅ 2bp ∆ guarantees that there is such a model).

• The “designated” model M in M ,M can be any model in M (that
there is some such model is guaranteed by the assumption that at least
one of Γ and ∆ is non-empty).

The model shows that Γ 2bp ∆.

Summing up

On the restricted vocabulary four of our nine notions of logical conse-
quence collapse and so there are six different notions of logical consequence.
The strongest consequence relation is �ll (which in the restricted vocabu-
lary is just classical consequence) which turns out to be equivalent to �lb,
�pl and �bp. �pp and �bb (super- and subvaluationist consequence) are dis-
tinct and strictly weaker than �ll. �lp is strictly weaker than �pp and �bl

strictly weaker than �bb. Finally, �bp is strictly weaker than any of the other
relations. The picture is, thus, as follows:

ll, pl, lb, pb

pp bb

lp bl

bp

10



3.2 Similarity relations

In this section we want to focus on models including a similarity relation for
each predicate P in the language and see how the presence of these relations
should be reflected in the semantics.

An ST-model is a triple 〈M ,M,∼〉 where M and M are as before and ∼
is a function mapping each predicate P of the language to a relation ∼P in
D ×D that is reflexive, symmetric but possibly non-transitive. The defini-
tions of �l, �p and �b carry over from S-models to ST-models; similarly for
validity and logical consequence. Similarity relations will be crisply inter-
preted in ST-models in the sense that for any individuals a and b, similarity
predicate IP and ST-model 〈M ,M,∼〉: M ,M �l aIP b iff M ,M �p aIP b iff
M ,M �b aIP b iff a ∼P b.5

The introduction of similarity relations should be reflected in the seman-
tics imposing a constraint on models. A natural idea is that any ST-model
in which a ∼P b is such that if Pa locally holds, then Pb holds at least
subvaluationally and if ¬Pa locally holds then ¬Pb holds, at least subvalu-
ationally.

Given an ST-model 〈M ,M,∼〉, any individuals a and b in the model,
and any predicate P , if a ∼P b then ∃M ′ ∈M s. t. M � Pa iff M ′ � Pb.

The motivation for this constraint is that sentences Pa and Pb cannot
have a big difference in semantic status if a and b are P -similar.

Given the previous characterization of similarity relations, if we allow
similarity predicates in the language then pb, pl and lb are stronger than ll
since the inference from {Pa, aIP b} to Pb is not ll-valid, but it is pb, pl and
lb valid (the inference is neither pp or bb valid). And pb is stronger than
both pl and lb since the inference from {Pa, aIP b, bIP c} to Pc is pb but not
pl and lb valid (pb allows us to take two steps in the sorites series but not
more). The consequence relations pl and lb come apart since, on the one
hand {Pa, aIP b,¬Pb} �pl ∅ while {Pa, aIP b,¬Pb} 2lb ∅ and on the other
hand ∅ �lb {Pa,¬aIP b,¬Pb} while ∅ 2pl {Pa,¬aIP b,¬Pb}. Thus, this is
the picture so far:

5Here we follow the same strategy as in TCS (p. 5-6). The non-crisp interpretation
of similarity predicates is relevant for the problem of higher-order vagueness; however we
leave this issue for future discussion.
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pb

pl lb

ll

The next question is whether pp and bb are still weaker than ll. The
answer is negative since {Pa, aIP b,¬Pb} �pp ∅ and ∅ �bb {Pa,¬aIP b,¬Pb}
but neither inference hold in the case of ll. Given Lemma 3 again, lp is still
weaker than both pp and ll, bl is weaker than bb and ll and bp is weaker
than lp and bl. Since the examples showing distinctness in section 3.2 still
work, these inclusions are strict:

pb

pl lb

pp ll bb

lp bl

bp

Since modus ponens is ll-valid it is valid in any of the three stronger
notions of consequence. However, the deduction theorem (for finite Γ and
∆, Γ �mn ∆ iff �mn

∧
Γ→

∨
∆) does not hold for all the nine consequence

relations. For example, it does not hold for bp even in the restricted vocab-
ulary since �bp ϕ → (ϕ ∨ ¬ϕ) though ϕ 2bp ϕ,¬ϕ. It does not hold in the
expanded vocabulary for some other consequence relations. For example,
{Pa, aIP b,¬Pb} �pl Pc but 2pl (Pa ∧ aIP b ∧ ¬Pb)→ Pc.

In TCS we provide a result linking the deduction theorem with self-
duality (p. 23, Lemma 10). That result, however, cannot be fully transposed
to the present setting; the reason is that the present setting does not always
preserve the standard connection between the comma in the premises and
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‘∧’ on the one hand, and the comma in the conclusions and ‘∨’ on the other
(as evidenced by the fact that {p,¬p} is b-satisfiable though p ∧ ¬p is not
and the fact that p ∨ ¬p is p-valid though {p,¬p} is not). Nevertheless, the
deduction theorem still holds for pb:

Lemma 7. For finite Γ and ∆, Γ �pb ∆ iff �pb
∧

Γ→
∨

∆

Proof. Assume: Γ �pb ∆ iff

1. For any ST-model 〈M ,M〉:
either ∃γ ∈ Γ M ,M 2p γ or ∃δ ∈ ∆ M ,M �b δ iff

2. For any ST-model 〈M ,M〉:
either M ,M 2p

∧
Γ or M ,M �b

∨
∆ iff

3. For any ST-model 〈M ,M〉:
either M ,M �b ¬

∧
Γ or M ,M �b

∨
∆ iff

4. For any ST-model 〈M ,M〉: M ,M �b
∧

Γ→
∨

∆ iff

5. �pb
∧

Γ→
∨

∆

Step from 1 to to 2 is based on the fact that a conjunction fails to be
supertrue iff some conjunct fails to be supertrue. Similarly, a disjunction is
subtrue iff some disjunct is subtrue. Step from 2 to 3 is based on the duality
of �p and �b. Step from 3 to 4 is also based on the fact that �b ϕ or �b ψ iff
�b ϕ ∨ ψ.

3.3 Tolerance

3.3.1 Non-transitive reasoning and the sorites

We repeat the sorites argument presented in section 1. Take a series of
patches of color: 〈a1, a2 . . . an〉. The first is clearly red and the last is clearly
orange (and so clearly not red). Each pair of adjacent members of the series
is similar in P -relevant respects; that is, ai ∼P ai+1 for 1 ≤ i < n. We can
construct the following sorites argument:

a1 is red
a1 is only imperceptibly different from a2

Therefore: a2 is red
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a2 is red
a2 is only imperceptibly different from a3

Therefore: a3 is red

...

an−1 is red
an−1 is only imperceptibly different from an
Therefore: an is red

As pointed out before, for any particular a and b, the inference from
Pa, aIP b to Pb is valid for pb, pl and lb. So each step of the argument
is valid according to any of these notions of consequence. However, the
argument,

a1 is red
a1 is only imperceptibly different from a2

a2 is only imperceptibly different from a3

...

an−1 is only imperceptibly different from an
Therefore: an is red

Is no longer valid in any of the three notions of consequence. In effect,
these notions of consequence allow us to solve this version of the paradox
as a case of non-transitive reasoning. We take it, however, that among
the three notions of consequence, pb is the best candidate for an adequate
characterization of non-transitive reasoning since it is self-dual (which pre-
serves standard relations between validity and unsatisfiability) and, further,
it preserves not only the validity of modus ponens but also the deduction
theorem.

The notion of consequence pb, however, makes a different diagnosis of the
problem with sorites arguments when we consider the formulation involving
the tolerance principle,

(T) ∀x∀y(P (x) ∧ xIP y → P (y))

Each instance of the tolerance principle is pb-valid and, correspondingly,
the negation of any instance is pb-unsatisfiable. However, the situation
changes when we look at the tolerance principle itself: it is not valid even in
our most generous notion of satisfaction �b. This fact is linked to the classi-
cality characteristic of the notions of supertruth and superfalsity. In effect,
as is well known, the tolerance principle is classically false for any suitable
sorites series, which makes its negation true in any classical model respect-
ing the constraints of any suitable sorites series. This makes the principle
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superfalse (and its negation supertrue) in any suitable S-model.

So the situation regarding the solution to the sorites is different de-
pending on the formulation of the paradox. For the formulation involving
similarity relations in a chain of step-by-step arguments the diagnosis is that
each step is valid, but not the corresponding ‘conjoined’ argument. For the
formulation involving (T) the diagnosis is that, although each instance is
valid, the principle itself is not valid; further, the principle is superfalse in
any suitable S-model; thus, in this formulation the argument is unsound. In
the next and last section we briefly compare this situation with the situation
in our previous paper concerning our preferred notion of logical consequence
‘st’.

3.3.2 Comparisons

As pointed out in section 1, in TCS we develop a semantics for vague pred-
icates that is sensitive to indifference relations. We define two notions of
satisfaction that play a central role: strict and tolerant satisfaction. The
first leads to a notion of unmixed consequence equivalent (in the restricted
vocabulary) to strong Kleene logic K3; the second to a notion of unmixed
consequence equivalent (in the restricted vocabulary) to K3’s dual: Priest’s
Logic of Paradox LP (sect 2.2. TCS). As pointed out before, K3 is a para-
complete logic and LP is its paraconsistent dual. The notion of logical
consequence to which we give more credit in TCS is st: the logic going from
strictly true premises to tolerantly true conclusions.

Here, we focused on pb, which is built on the supervaluationist and sub-
valuationist notions of satisfaction. As in the case of K3, the supervaluation-
ist logic is a paracomplete logic; as in the case of LP, the subvaluationist’s
logic is a paraconsistent logic. However, unlike K3, the supervaluationist’s
logic is only weakly paracomplete in the sense that classical validities remain
valid. In the same vein, unlike LP, the subvaluationist’s logic is only weakly
paraconsistent in the sense that classical contradictions remain unsatisfiable
(K3 and LP are accordingly called ‘strongly’ paracomplete/paraconsistent).6

For sorites formulations involving similarity relations in a chain of argu-
ments (let us call them ‘type A’ arguments (see TCS version 1 argument)),
st and pb make similar predictions; namely, the argument is invalid. This is
natural since the prediction is based on similar features of st and pb, namely,
going from high-standards of satisfaction in the premises to lower standards
in the conclusions with suitable constraints on similarity predicates. The
difference comes when we consider the formulation of the paradox involving

6See (Hyde, 2008, ch. 4) for discussion on this distinction in the context of a theory of
vagueness. Hyde credits the distinction to Arruda (1989).
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the tolerance principle (call these ‘type B’ arguments (see TCS, version 2
argument)). Both st and pb agree that the argument is unsound; however,
whereas for st the tolerance principle is valid (as is any instance of it), for
pb, although each instance is valid, the principle itself is not valid (is not
even subtrue in any suitable model).

st-consequence pb-consequence
(T) valid not valid
Instances valid valid
Diagnosis The argument is unsound The argument is unsound

Figure 1: st, pb and B-arguments

The situation of B-type arguments reflects the nature of the notions of
satisfaction involved in each notion of consequence. On the one hand, it is
characteristic of paracomplete solutions to the paradox to diagnose sorites
arguments as valid but unsound, since (T) has some untrue instances. On
the other hand, it is characteristic of paraconsistent solutions to diagnose
sorites arguments as sound but not valid, since every instance of (T) is true
but the rule of modus ponens is not valid. However, the weak paracomplete-
ness/paraconsistency of supervaluationism and subvaluationism makes them
agree where K3 and LP disagree. According to K3 the tolerance principle
is untrue; according to LP is true; however, according to both supervalua-
tionism and subvaluationism the tolerance principle is superfalse (note that
this reflects the subvaluationist failure of adjunction and, more generally,
universal generalization).7

Mixed consequence such as st and pb share features with both paracom-
plete and paraconsistent approaches. For both st and pb the argument in
its B-form is unsound. For both, every instance of the tolerance principle is
valid. The difference in weak/strong paracompleteness and paraconsistency
reveals in that although the tolerance principle is st-valid it is not pb-valid.
Thus, although the solution to the paradox is of a similar kind, the situ-
ation is somewhat different. The solution to B-type arguments according
to st involves the claim that a valid sentence cannot always be used as a
premise for a valid argument. Since although (T) is st-valid (since it is t-
valid) it cannot be used in as a premise is an st-valid argument ((T) would
need to be s-valid, which is not). The solution to this formulation of the
paradox according to pb avoids this problem, but at the price of admitting
the subvaluationist characteristic failure of universal generalization.

7See (Dietz, 2010, sect. 5) for a lucid presentation of the solution to the paradox
concerning K3, LP, supervaluationism and subvaluationism.
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Conclusion

In this paper we have characterized the space of consequence relations that
we might define out of the three notions of satisfaction: local truth, su-
pertruth and subtruth. For the restricted vocabulary, mixed notions of con-
sequence that go from higher to lower standards of satisfaction (pb, lb and
pl) coincide with local consequence. The remaining relations are all weaker
than local consequence with bp as the weakest possible relation in the present
setting (this consequence relation holds only if either the premises contain
a classical contradiction or the conclusions a classical validity). We turned
to see how similarity relations can be connected to the present framework.
A natural idea is that similarity guarantees at most a small difference in
semantic status. Thus, for example, the local truth of Pa in an ST-model
guarantees the subtruth of Pb for any similar b in the model. When we
allow similarity predicates into the language, all the consequence relations
are distinct. Among the three stronger notions of logical consequence, pb
seems to be the best option since modus ponens is valid and the deduction
theorem holds. Though, due to their classicality, none of the logics discussed
in this paper validate the tolerance principle, we can nonetheless provide a
tolerant solution to the sorites paradox for its step-by-step formulation.

In the last section we briefly compared the notions of logical consequence
st and pb. Both notions provide a satisfactory solution to the formulation of
the sorites involving similarity relations and a chain of arguments. However,
they differ on the solution to the formulation involving the tolerance princi-
ple. Both agree on the idea that the argument is unsound, and both agree
that each instance of (T) is valid but while for st (T) is valid, for pb is not.
The first is committed to the idea that a valid sentence might not qualify as
a good premise for a valid argument; the second avoids this consequence at
the price of endorsing the subvaluationist characteristic failure of universal
generalization.

It looks to us that the mentioned differences between st and pb do not
constitute enough evidence to tilt the balance towards any of them.8 We
already argued that st fits well with psycholinguistic data from recent ex-
periments (Ripley (2009), Alxatib and Pelletier (201x) and Serchuk et al.
(201x)) but we have not yet investigated whether the present framework
fares well with these results. Other questions might be relevant to decide
this issue. First, whether we can naturally introduce a tolerant conditional
to provide a sound-but-unvalid solution to the formulation of the paradox
involving (T) while preserving at the same time the properties of a good con-
ditional such as modus ponens and the deduction theorem. Second, given

8See, however, Ripley (201x) for arguments against super- and subvaluationist non
truth-functionality.
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a natural formulation of the notion of a borderline case, whether we can
accommodate the phenomenon of higher-order vagueness (an issue we also
left for future work in TCS).

Appendix: tableaux

We can provide a tableaux system to check for any of the consequence rela-
tions presented in this paper. The idea is based on the obvious analogy of
S-models and models of first-order modal logic with constant domain and a
universal accessibility relation.

Definition 4 (Global modality). For any S-model 〈M ,M〉: M ,M �l �ϕ
iff ∀M ∈M , M � ϕ. M ,M �l ♦ϕ iff M ,M �l ¬�¬ϕ.

Lemma 8. For any S-model 〈M ,M〉: M ,M �l �ϕ iff M ,M �p ϕ and
M ,M �l ♦ϕ iff M ,M �b ϕ.

Proof. From the definitions.

These connections give us a neat way to apply standard modal tableaux
for any of our nine notions of consequence.9 Suppose we want to check
whether Γ �pb ∆. Then we have to construct a standard tableau for
�(Γ)∪¬♦(∆). In our adaptation of modal tableaux, the nodes of a tree are
something of the form ϕ, i where ϕ is a formula and i is a natural number
(numbers designate classical models in an ST-model). The rules correspond-
ing to � and ♦ are:

�ϕ, i ♦ϕ, i
ϕ, j ϕ, j

(for any j in the tableau) (for a new j)

We should further consider particular rules for similarity predicates.
Given the characterization of these expressions, these are the corresponding
rules:

Pu, 0 ¬Pu, 0
uIP v uIP v

Pv, i ¬Pv, i
(for a new i) (for a new i)

9See Priest (2008) for modal tableaux.
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Here 0 is is our “designated model”. Similarity claims are always in-
terpreted in a fixed way, that is why there is no need of tagging the cor-
responding lines. Accordingly, Boxes and Diamonds should have no effect
over similarity claims. Finally, we consider a rule for the symmetry of ∼P
(we do not need to introduce a rule for the reflexivity of ∼P since in any
tableau the node Pa, 0 will always lead to a stronger claim than the claim
according to which Pa holds at some accessible m, namely, to the claim that
Pa holds at accessible 0):

uIP v
↓

vIPu

Example 1 aIP b �pb Pa→ Pb

aIP b
¬♦(Pa→ Pb), 0
�¬(Pa→ Pb), 0
¬(Pa→ Pb), 0

Pa, 0
¬Pb, 0
Pb, 1

¬(Pa→ Pb), 1
¬Pb, 1
⊗
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