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In rank aggregation, the task is to aggregate multiple weighted input
rankings into a single output ranking. While numerous methods, so-called
social welfare functions (SWFs), have been suggested for this problem, all of
the classical SWFs tend to be majoritarian and are thus not acceptable when a
proportional ranking is required. Motivated by this observation, we will design
SWEFs that guarantee that every input ranking is proportionally represented
by the output ranking. Specifically, our central fairness condition requires
that the number of pairwise comparisons between candidates on which an
input ranking and the output ranking agree is proportional to the weight
of the input ranking. As our main contribution, we present a simple SWF
called the Proportional Sequential Borda rule, which satisfies this condition.
Moreover, we introduce two variants of this rule: the Ranked Method of
Equal Shares, which has a more utilitarian flavor while still satisfying our
fairness condition, and the Flow-adjusting Borda rule, which satisfies an even
stronger fairness condition. Many of our axioms and techniques are inspired
by results on approval-based committee voting and participatory budgeting,
where the concept of proportional representation has been studied in depth.

1. Introduction

For booking flights or hotels, many users consult aggregator websites such as google
flights, skyscanner, or booking.com. These websites allow users to quickly get an overview
of the available flights or hotels by offering several ways to sort the options. For instance,
flights may be sorted by their price, travel time, or number of stop-overs, whereas hotels
are commonly sorted by price or user rating. Furthermore, aggregator websites typically



offer a recommended ranking that combines multiple criteria.! More generally, it would
be desirable to allow users to specify importance weights for individual criteria and to
compute customized output rankings based on these weights.

The problem of finding such aggregate rankings is commonly studied under the term
rank aggregation and has attracted significant attention in social choice theory (e.g.,
Arrow et al., 2002; Brandt et al., 2016) and beyond (e.g., Kolde et al., 2012; Sarkar et al.,
2014; Chatterjee et al., 2018; Wang et al., 2024). In more detail, in rank aggregation,
we get a profile of weighted rankings as input, where the weights are non-negative and
add up to one, and we need to return a single output ranking. For instance, this model
captures situations where users want to sort hotels to 60% by their price and 40% by their
user rating as this task requires us to combine the ranking by price and the ranking by
user rating. Moreover, in social choice theory a multitude of rank aggregation methods,
so-called social welfare functions (SWFs), have been suggested, with the most prominent
examples including the Kemeny rule (Kemeny, 1959; Young and Levenglick, 1978), various
types of scoring rules (Smith, 1973; Conitzer et al., 2009; Boehmer et al., 2023; Lederer,
2024), and Condorcet-type rules (Copeland, 1951; Fischer et al., 2016).

However, as observed by Lederer et al. (2024), none of these classic SWFs is suitable for
aggregating rankings based on user-specified weights because they are heavily majoritarian.
For example, if a user wants to combine two inverse rankings with weights of 51% and
49%, most SWFs will simply return the ranking with the larger weight instead of actually
combining the rankings. Motivated by this observation, Lederer et al. (2024) have
initiated the study of proportional SWFs, aiming for methods that represent the input
rankings proportional to their weights.? Specifically, these authors formalize proportional
representation in terms of the number of pairs of candidates on which the input and
output rankings agree on: an input ranking with weight a should agree at least with an
a fraction of all pairwise comparisons of the output ranking. Moreover, Lederer et al.
(2024) suggest the Squared Kemeny rule to compute proportional rankings. However,
while the Squared Kemeny rule is certainly more proportional than established SWEFs, it
does not satisfy the aforementioned fairness condition in general, thus leaving the design
of fully proportional SWFs as an open problem.

1.1. Our Contribution

In this paper, we will design the first truly proportional SWFs by employing ideas
from approval-based committee voting and participatory budgeting, two fields in which
proportionality has been studied extensively (see, e.g., Lackner and Skowron, 2023; Rey
and Maly, 2023). To explain our results, we define the utility of an input ranking > for
an output ranking > as the number of pairwise comparisons these rankings agree on,

'See, e.g., https://www.skyscanner.net/media/how-skyscanner-works for an overview of how
skyscanner computes its recommended ranking.

2We note that proportionality is often interpreted as a fairness notion for the input rankings. In rank
aggregation, there is another influential line of work that investigates fairness with respect to attributes
of candidates (e.g., Chakraborty et al., 2022; Wei et al., 2022; Pitoura et al., 2022). Specifically, the
idea of these papers is that some candidates have protected attributes that should be fairly represented
in the output ranking, regardless of the information provided of the input rankings.
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e, u(>,>) = |{(z,y): = y and x > y}|. Now, since every ranking on m candidates
induces (“21) pairwise comparisons between candidates, the fairness axiom of Lederer et al.
(2024) formally requires that every input ranking with weight « obtains a utility of at
least |« (g‘)J from the output ranking. We call this condition unanimous proportional
justified representation (uPJR) because, when viewing rankings as approval ballots
over pairs of candidates, this axiom weakens a well-known proportionality notion called
proportional justified representation (Sanchez-Fernandez et al., 2017) by only focusing
on groups of voters that unanimously report the same ballot. Based on this relation
to approval-based committee voting, we also introduce two further fairness notions for
rank aggregation called unanimous justified representation (uJR) and strong proportional
Justified representation (sPJR), which respectively weaken and strengthen uPJR.

As our main contribution, we propose SWFs that satisfy these fairness conditions.
Specifically, we will show the following results:

e As a warm-up, we will first analyze uJR, which demands that every input ranking
with a weight of at least 1/ (7;) obtains a non-zero utility from the output ranking.
We note that uJR can be seen as the counterpart of justified representation, another
well-known proportionality notion in approval-based committee voting (Aziz et al.,
2017), for rank aggregation. We show that the Squared Kemeny rule by Lederer
et al. (2024) severely fails this condition (Proposition 1), thus demonstrating the
need of more proportional rules. Moreover, we also design a simple rule inspired by
Chamberlin-Courant approval voting that satisfies uJR (Proposition 2).

o We next turn to uPJR and, inspired by similar results in approval-based committee
voting and participatory budgeting (Peters and Skowron, 2020; Brill et al., 2023),
prove that uPJR is implied by a more structured fairness axiom called rank-
priceability (Proposition 3). Based on this insight, we design a simple SWF, the
Proportional Sequential Borda rule (PSB), that satisfies rank-priceability and thus
uPJR (Theorem 1). Roughly, PSB repeatedly picks the Borda winner in the current
profile, deletes this candidate from the profile, and reduces the weights of each
input ranking proportional to its contribution to the score of the Borda winner.

e We introduce the Ranked Method of Equal Shares (RMES) as a more utilitarian
variant of PSB. Moreover, this method closely resembles the Method of Equal Shares,
one of the most prominent tools for fair collective-decision making (Peters and
Skowron, 2020; Peters et al., 2021). Roughly, RMES distributes a budget of ("21) to
the input rankings proportional to their weights, and the input rankings then use
this budget to repeatedly buy candidates. In every step, we buy the affordable
candidate that minimizes the cost per utility ratio for the input rankings. While
this method satisfies rank-priceability and thus uPJR (Theorem 3), we also show
that it is rather utilitarian: the first || candidates in this ranking (or roughly
T76 of the total utility) agree with the majoritarian ranking obtained by repeatedly
picking the Borda winner and deleting it from the profile (Proposition 4).

e We further analyze sPJR which extends the reasoning of PJR to arbitrary groups
of input rankings: if a group of input rankings has a total weight of «, the output



ranking should agree with at least |« (?)j pairwise comparisons of these rankings.
As we will show, both PSB and RMES fail this condition because, roughly, rank-
priceability does not entail guarantees for groups of rankings. We thus introduce a
refinement of rank-priceability called pair-priceability and show that this notion
implies sPJR (Proposition 5). Moreover, we propose another variant of PSB called
the Flow-adjusting Borda rule (FB) that satisfies rank-priceability (Theorem 5).
Notably, FB only augments PSB by using a more sophisticated scheme for updating
the weights of the input rankings.

e Inspired by an analogous result for the Squared Kemeny rule (Lederer et al., 2024,
Theorem 4.2), we examine the average utility our SWFs guarantee to a group of
rankings, as a function of the total weight of the group. For each of our SWFs,
we show that the average utility of every group of rankings is at least linear in
the weight of the group. In more detail, we prove that the average utility of every
group of rankings with a total weight of « is at least %(ZL) — 13—6, thus providing

another strong proportionality guarantee for our rules (Theorems 2, 4 and 6).

1.2. Related Work

Rank aggregation is one of the oldest problems in social choice theory as even Arrow’s
impossibility theorem has originally been shown in this setting (Arrow, 1951). There is
thus a large body of work on SWFs and we refer to the textbooks by Arrow et al. (2002)
and Brandt et al. (2016) for an overview of this research area.

Our paper is related to an influential stream of works that studies scoring rules
for rank aggregation (e.g,. Kemeny, 1959; Smith, 1973; Young and Levenglick, 1978;
Young, 1988; Freeman et al., 2014; Boehmer et al., 2023). Specifically, positional scoring
rules such as the Borda rule compute the output ranking by assigning scores to the
candidates and sorting the candidates in descending order of their scores. Such SWFs have
attracted significant attention and have, e.g., been repeatedly characterized based on a
population-consistency condition (e.g., Smith, 1973; Young, 1974; Nitzan and Rubinstein,
1981). Moreover, positional scoring rules can be easily modified to work sequentially by
repeatedly adding the candidate with the highest (resp. lowest) score to the next best
(resp. worst) position of the output ranking (e.g., Smith, 1973; Freeman et al., 2014;
Boehmer et al., 2023). The Proportional Sequential Borda rule and the Flow-adjusting
Borda rule are closely related to this approach as we repeatedly add the Borda winner
to the ranking, but we carefully update the weights of the input rankings to obtain a
proportional outcome. Furthermore, our work is related to the Kemeny rule, another
well-studied SWF (e.g., Kemeny, 1959; Young and Levenglick, 1978; Young, 1988; Can
and Storcken, 2013), as this rule maximizes the utilitarian social welfare in our setting.

While the aforementioned works are influential, they do not focus on proportional
decision making. Indeed, the study of proportionality in rank aggregation has only
recently been initiated by Lederer et al. (2024) who suggested the Squared Kemeny
rule to compute proportional rankings. Moreover, Aziz et al. (2025) have studied a
prefix-based fairness concept for rank aggregation, which is unrelated to uPJR. We will



thus rely on ideas from approval-based committee voting (Lackner and Skowron, 2023)
and participatory budgeting (Aziz and Shah, 2021; Rey and Maly, 2023) to formalize
proportionality. In particular, all our fairness axioms are closely related to fairness notions
from this literature (e.g., Aziz et al., 2017; Sanchez-Fernandez et al., 2017; Peters and
Skowron, 2020; Brill et al., 2023). Moreover, the budgeting approach used for defining
our SWFs is reminiscent of the Method of Equal Shares, one of the most prominent rules
in these settings (Peters and Skowron, 2020; Peters et al., 2021).

Inspired by these works on approval-based committee voting and participatory bud-
geting, proportionality has been studied in numerous other models, some of which are
related to rank aggregation. In particular, Skowron et al. (2017) and Brill and Israel
(2025) study the problem of proportionally aggregating the voters’ approval ballots into a
ranking, but they focus on a prefix-based fairness concept. Moreover, there are models of
repeated decision making (Lackner, 2020; Bulteau et al., 2021; Lackner and Maly, 2023,
Chandak et al., 2024), where a candidate needs to be selected in each round and each
group of voters should be fairly represented over all rounds. However, as the sequence
of candidates is not interpreted as a ranking, this literature again focuses on different
fairness notions. Finally, Masafik et al. (2024) study a general model of proportional
decision making, which contains rank aggregation as a special case. However, applying
these results to rank aggregation gives only very mild guarantees and, e.g., allow that
groups of agents of size less than % are left without any representation.

Finally, rank aggregation has also gained significant attention outside of social choice
theory. For example, the problem of rank aggregation is considered in computational
biology (e.g., Lin, 2010; Kolde et al., 2012), machine learning (Prati, 2012; Sarkar et al.,
2014; Wang et al., 2024), metasearch (Dwork et al., 2001; Renda and Straccia, 2003), and
crowdsourcing (Niu et al., 2015; Chatterjee et al., 2018). We thus believe that our work
has also the potential to provide novel insights for these applications of rank aggregation.

2. Preliminaries

Let C = {x1,...,z,} denote a set of m candidates. A ranking > is a strict linear
order over (', and we typically write rankings as comma-separated lists. For instance,
= = x1,T9, T3 means that xi is preferred to xo and x9 is preferred to xz3. The set of
all rankings over C' will be denoted by R. Following Lederer et al. (2024), we define
a ranking profile R as a function from R to [0,1] such that ) ., R(>~) = 1. Less
formally, a ranking profile specifies for every ranking > € R a weight R(>) and the total
weight sums up to one. These weights may be interpreted as the importance scores in
a multi-criteria decision-making problem or as the shares of voters that report a given
ranking. Furthermore, we say a function S : R — [0, 1] is a subprofile of a profile R if
S(>=) < R(>) for all = € R. In a voting setting, a subprofile S can be interpreted as an
arbitrary group of voters. We define the size |S| of a subprofile S by [S| =" ~r S(>~)
and observe that |S| € [0, 1] for every subprofile S.

Given a ranking profile R, our goal is to aggregate the input rankings into one output
ranking. For this problem, we use social welfare functions (SWFs), which are functions



that map every ranking profile to a single output ranking. To clearly distinguish between
input rankings and output rankings, we will write > for the former and > for the latter.
The assumption that SWFs always choose a single output ranking will sometimes require
tie-breaking as multiple rankings can be tied for the win. We will typically break such
ties in favor of candidates with smaller indices and note that this assumption does not
affect our results. Indeed, all our results also hold when viewing our rules as set-valued
SWEFs, but this model introduces unnecessary notational complexity.

2.1. Proportionality Axioms

The central goal of this paper is to find output rankings that represent the input rankings
proportionally to their weights: a ranking with weight a should have an influence of « on
the outcome. Following the approach of Lederer et al. (2024), we will formalize this idea
by requiring that the number of pairs of candidates for which an input ranking and the
output ranking agree is proportional to the weight of the input ranking. We moreover
note that we define our fairness axioms as properties of rankings; an SWF f satisfies a
given axiom if its chosen ranking f(R) satisfies the axiom for all profiles R.

To formalize our fairness axioms, we define the wtility of a ranking > for another
ranking > by u(=,>) = [{(x,y) € C?: 2 = y Ax > y}|. That is, the utility of an input
ranking > for the output ranking > is the number of pairs of candidates for which the
rankings agree. Furthermore, we let u(>-,z,X) = [{y € X \ {z}: > y}| denote the
utility of a candidate x within the set of candidates X with respect to >. Alternatively,
u(>,z, X) can also be interpreted as the Borda score of x within the set X. This term will
be crucial in our analysis because u(>,>) = 7" u(>=, x4, {xi, ..., £, }) for every input
ranking > and output ranking > = x1,...,2,,. We note that the utility u(>,>) is dual
to the swap distance swap(>=,>) = |{(x,y) € C?: x = y Ay > x}| used by Lederer et al.
(2024). Specifically, it holds for all rankings >, > € R that u(>~,>) = (%}') — swap(>-,>)
since (") is the maximal utility (or swap distance) for two rankings with m candidates.
Therefore, our results could also be phrased in terms of swap distance.

We will now introduce our first fairness condition called unanimous proportional
justified representation (uPJR), which requires that the utility of every ranking should
be proportional to its weight. Both Lederer et al. (2024) and Aziz et al. (2025, Section 8)
have investigated this condition but only present SWFs that approximate uPJR.

Definition 1 (Unanimous Proportional Justified Representation). A ranking > satisfies
unanimous proportional justified representation (uPJR) for a profile R if u(>,>) >
[R(>-) - ()] for all = € R.

The name of this axiom is motivated by the fact that uPJR can be seen as a weakening of
proportional justified representation (PJR), a well-known fairness condition for approval-
based committee voting (Sdnchez-Fernandez et al., 2017). In more detail, in approval-
based committee voting, a set of voters N = {1,...,n} report approval ballots A; C C
over the candidates and the goal is to choose a subset of the candidates of predefined
size k. Then, the idea of PJR is that, if a group of voters S is large enough to deserve
¢ seats and the voters in S agree on ¢ approved candidates, the winning committee



should contain at least ¢ candidates that are approved by voters in S. More formally,
a committee W satisfies PJR for an approval profile A if [W N{J,.q A;| > ¢ for every
group of voters S with |S| > %” and |(N;eq 4i| > L.

PJR can be naturally adapted to rank aggregation by associating each ranking > with
the set A(>) = {(z,2;) € C x C: z; > z;}, which can be interpreted as an approval
ballot over C? = {(z;,z;) € C x C: z; # x;}. Hence, we can view the problem of rank
aggregation as an instance of approval-based committee voting over the set C? with
transitivity constraints. Specifically, given the input ballots A(>) with weights R(>), we
need to choose a transitive subset of C? of size k = (Tg) Applying PJR to this instance
of committee voting results in the following condition: a ranking > satisfies PJR for a
profile Rif [A(>) NU, er. 5(-)=0 A(-)| = £ for every subprofile S of R with [S| > /(")
and |, cg. s(=)>0 A(=)| = €. Finally, uPJR arises from PJR by additionally requiring
that S only assigns positive weight to a single ranking.

In addition to uPJR, we will consider two more fairness axioms in this paper. The
first one, unanimous justified representation, is a weakening of uPJR which requires that
each rankings with a weight of at least 1/ (73) should get a non-zero utility. We observe
that this axiom can be seen as the counterpart to justified representation (JR), another
well-known fairness condition in approval-based committee elections (Aziz et al., 2017).3

i€S

Definition 2 (Unanimous Justified Representation (uJR)). A ranking > satisfies unani-
mous justified representation (uJR) for a profile R if u(>,>) > 1 for every > € R with
R(=) = 1/(3).

Secondly, we will also consider a strengthening of PJR, which extends the reasoning of
uPJR to arbitrary groups of rankings. Specifically, sPJR requires that for every subprofile
of weight «, the output ranking chooses a pairwise comparisons from the union of the
rankings in S. We note that sPJR does not impose any cohesiveness conditions, so it is a
more demanding proportionality axiom than PJR and uPJR.

Definition 3 (Strong Proportional Justified Representation). A ranking > satisfies strong
proportional justified representation (sPJR) if |A(>) NU. cx. s(=)>0 AC-) = [IS]- ()]
for all subprofiles S of R.

Finally, we will also quantitatively measure the fairness of SWFs. Specifically, following
Lederer et al. (2024) and Skowron and Gorecki (2022), we will derive lower bounds on the
average utility of an arbitrary subprofile S, as a function of the size of |S|. This approach
allows for a much more fine-grained analysis than an axiomatic analysis. On the down
side, the assumption that S can be an arbitrary subprofile restricts the guarantees we
can show. For instance, when |S| = 1, the best bound one can prove is %(g‘), which is
the average utility of every output ranking for the profile where two inverse rankings
each have a weight of %

3uJR is equivalent to JR in rank aggregation. In particular, the latter axiom requires that |A(>) N

Us er: soyo0 AC)| > 1 [S| > (3) 7" and [N_cr, gy A(-)| > 1 for all subprofiles S. Now, if
S assigns positive weight to two rankings >; and >3, there is a pair of candidates z1,z2 such that
x1 =1 22 and x2 =2 x1. Consequently, every output ranking agrees with either >1 or =2 in at least
one pair of candidates. Hence, JR is trivial in rank aggregation unless S assigns a positive weight to a

single ranking and it reduces to uJR in this case.



3. Results on Unanimous Justified Representation

As a warm-up, we will start by examining uJR. We first note that traditional SWFs, such
as the Kemeny rule or the Borda rule, fail this condition because these rules are heavily
majoritarian. We will thus focus on the Squared Kemeny rule which has been explicitly
proposed by Lederer et al. (2024) for computing proportional rankings. In more detail,
we will show that this SWF fails uJR arbitrarily badly as m increases (Section 3.1).
Furthermore, in Section 3.2, we will devise a simple rule inspired by Chamberlin-Courant
approval voting that satisfies uJR.

3.1. The Squared Kemeny Rule

We start by analyzing the Squared Kemeny rule, which chooses the ranking that minimizes
the total squared swap distance to the input rankings. Formally, the Squared Kemeny
rule (SqK) is defined by SqK(R) = arg minser Y. cx R(>)swap(-,>)? or, equivalently,
SqK(R) = argminger >, e R(-)(('y) — u(>,>))?. We note that there can be multiple
rankings that minimize the squared swap distance, so a full definition of this rule requires
further tie-breaking. However, the tie-breaking will not matter for our subsequent
proposition, so we omit these details.

We will next prove that SgK fails uJR for all m > 5. Specifically, we will present
a family of profiles R such that R(>~) = %/ (TZ”) for some ranking > but SgK uniquely
chooses the inverse ranking of >. This means that the Squared Kemeny rule does not
even approximate uJR: for every k € N, there is a number of candidates m, a profile R,

and a ranking > such that > deserves a utility of k£ in R but obtains a utility of 0.

Proposition 1. For all m > 5, there is a profile R and ranking > such that R(>) =
%/(g‘) and u(>,SqK(R)) = 0.

Proof Sketch. We consider the following four rankings to prove this proposition: > is

given by =1 = 21,22, ...,Tm, =2 by =2 = T1,ZTpm, ..., T, >3 is an arbitrary ranking that
bottom-ranks x; and agrees with L% (m; I)J pairwise comparisons with =1, and =4 also
bottom-ranks x1 and arranges the candidates xs, ..., z,, inversely to >=3. For instance, if

m = 5, we may choose the following four rankings.

~1=121,%2,23,T4,T5 =2 = X1,T5,T4,T3, 22

>3 = X5,T2,T3, T4, L1 =4 = T4,T3,T2,T5,T1

Further, let R denote the profile given by R(>~1) = % - (7;)71 and R(>2) = R(>3) =

R(-4) = % (1= (7;)71) We show that the Squared Kemeny rule picks the ranking
SqK(R) = zp,...,x1, thus leaving >; without any representation. While the proof
for this claim is tedious, we note three high-level ideas. Firstly, it can be shown that
the output ranking must generate a higher utility for >2 than for >; because > and
o as well as >3 and >4 order the candidates xo,...,x,, inversely to each other and
R(>2) > R(>1). Secondly, we show that the closer the output ranking > without z; is

t0 Ty, - - ., 2, the lower we must rank x; in >. For instance, if x5> x4 > - - > x9, we get



that z; must be bottom-ranked. Thirdly, we prove that if x; is ranked sufficiently low in
>, then it is optimal to order the candidates xs, ..., zo inverse to >=1 because the weight
of >3 is significantly larger than that of >;. By formalizing these ideas, it follows that
SqK(R) = xy, ..., x1, thus proving the proposition. O

Remark 1. We opted in Proposition 1 for the simplest example we found that demon-
strates that SqK fails uJR and generalizes to all m > 5. It is hence plausible that profiles
with more severe violations can be constructed. For instance, Lederer et al. (2024) showed
based on a computer-aided approach that there is a profile R and a ranking > such that
R(>) =~ 0.17 but the Squared Kemeny rule chooses the inverse ranking of > when m = 6.
Furthermore, it can also be shown that the Squared Kemeny rule fails uJR if m = 4 but
we failed to generalize the corresponding profile to larger m.

3.2. The Chamberlin-Courant SWF

In light of Proposition 1, one may think that involved techniques are required to design
SWFs satisfying uJR. We will next refute this hypothesis by introducing a very simple
SWF inspired by Chamberlin-Courant approval voting that satisfies this fairness condition.
To this end, we recall that Chamberlin-Courant approval voting is an approval-based
committee voting rule which chooses the committee that maximizes the number of voters
who approve at least one selected candidate (Chamberlin and Courant, 1983; Lackner
and Skowron, 2022). Put differently, this rule maximizes the number of voters that have
a utility of at least 1. We adapt this idea to the context of rank aggregation by defining
the score function s : Ng — R given by s(z) = 1 if x > 0 and s(0) = 0. Then, the
Chamberlin-Courant SWF chooses a ranking t> that maximizes ) . . R(>) - s(u(>,>)),
with ties broken arbitrarily. We will next show that this SWF satisfies uJR.

Proposition 2. The Chamberlin-Courant SWF satisfies uJR.

Proof. Fix a profile R and let > denote the ranking chosen by the Chamberlin-Courant
SWF. Hence, > maximizes ) . .p R(>) - s(u(>,>)) and therefore also » . .o R(>) -
(s(u(>,>)) — 1). We next observe that it holds for all >,>" € R that s(u(>,>")) =0
if and only if > orders the candidates inversely to >>’. This means that ) . .o R(>) -
(s(u(>,>")) — 1) = —R(«’) for all >’ € R, where 4’ denotes the inverse ranking to >'.
Finally, since > maximizes ) . 5 (s(u(>,>)) — 1), it follows that its inverse ranking «
minimizes R(«). Since |R| = 1, this implies that R(«) < -L;. Hence, the only ranking
with utility 0 has a weight of at most +; < 1/ (g”), which shows that uJR is satisfied. [

m!

Remark 2. In approval-based committee voting, the Chamberlin-Courant rule is NP-
hard to compute as it is closely related to the set cover problem (Procaccia et al., 2008;
Skowron et al., 2016). By contrast, the Chamberlin-Courant SWF can be computed
efficiently in rank aggregation as we only need to identify the ranking with the smallest
weight. Moreover, the Kemeny rule, which is the counterpart of multi-winner approval
voting in rank aggregation, is NP-hard to compute whereas multi-winner approval voting
can be computed in polynomial time. It hence seems worthwhile to reexamine the
computational complexity of Thiele rules in the context of rank aggregation.



4. Results on Proportional Justified Representation

We next turn to the analysis of uPJR and sPJR. Specifically, we will shows that these
proportionality axioms are implied by two notions of priceability, which we respectively
call rank-priceability and pair-priceability. Based on these more structured axioms, we
design several SWFs that satisfy uPJR and sPJR. Intriguingly, all of these SWFs rely on
the idea of sequentially choosing candidates based on their Borda score and only aim at
slightly different objectives. Moreover, we will show that each of our SWFs guarantees a
high average utility to every subprofile. All proofs for the results in Sections 4.2 and 4.3
are deferred to the appendix.

4.1. Rank-priceability and the Proportional Sequential Borda rule

In this section, we will present our first SWF that satisfies uPJR, namely the Proportional
Sequential Borda rule (PSB). To this end, we will discuss a more structured fairness
condition called rank-priceability and show that this condition implies uPJR. Based on
this result, we will then prove that PSB satisfies uPJR. Furthermore, we will show that
PSB guarantees an average utility of at least @ (g‘) — % to every subprofile S.

We start by introducing rank-priceability, which is inspired by the concept of priceability
in approval-based committee voting and participatory budgeting (e.g., Peters and Skowron,
2020; Brill et al., 2023). In these settings, voters report approval ballots over costly
candidates and we need to choose a representative subset of candidates subject to a
committee size or a budget constraint. Now, the idea of priceability is that it should
be possible to explain the outcome by a payment scheme from the voters to the chosen
candidates. In more detail, a set of candidates W is called priceable if there is a virtual
budget B that is uniformly distributed among the voters and a payment scheme that
satisfies the following conditions:

(1) Voters only spend their share of the budget on their approved candidates in W.
(2) The total budget spent on each candidate in W is equal to its cost.

(3) The unspent budget of any group of voters is not enough to pay for a commonly
approved candidate outside of W.

We next aim to transfer this axiom to rank aggregation. To this end, we assume
that candidates will be bought sequentially and we update the cost of candidates and
the payment willingness of rankings in each step. In more detail, in every step, the
cost of a candidate will be the maximal utility it can generate for a ranking and the
payment willingness of a ranking will be the additional utility it obtains by assigning
the considered candidate to the next position in the ranking. To make this more formal,
let > = x1,...,2y, denote an arbitrary ranking. If we place x; in the i-th position
of the output ranking after x1,...,x;_1 have been put at positions 1,...,7i — 1, we
generate a utility of u(>~, x;, {x;,...,zy,}) for every input ranking ». We thus require
that no ranking pays more than u(>, z;, {x;,..., 2, }) for candidate z;. Moreover, since
u(>=, zi, {xi, ..., xp}) <m —ifor all = € R and u(>, z, {zi,...,zn}) = m — i, we set
the cost of x; to m —i. Consequently, the total cost of all candidates is ) ;" m—i = (Tg)

10



Finally, because there is no counterpart to the third condition of priceability in rank
aggregation, we will fix the budget to B = ("21) and require that most of the budget is
spent. Specifically, the total unspent budget should be less than 1. As a consequence, it
may not be possible to pay for all candidates, so we use the costs of the candidates only as
upper bounds. Hence, our condition may be dubbed "approximate perfect priceability",
because the total budget perfectly matches the total cost of the ranking but we may
not be able to cover the cost of all candidates. Formalizing all our ideas results in the
following condition, which we call rank-priceability.

Definition 4 (Rank-Priceability). A ranking > = x1,...,z,, is rank-priceable for a
profile R if there is a payment function 7 : R x C' = R such that

(1) 0 < 7(=,25) <ul>,z {xs, ..., }) for all = € R and x; € C,

(2) Ygex (=) < (3) - R(-),
(3) Yverm(,2;) <m —iforallic{l,...,m}, and
(

4) Yoer Z;WEC (-, @) > (gl) - L

As usual, an SWF f is rank-priceable if f(R) satisfies this condition for every profile R.

We will next show that rank-priceability implies uPJR, thereby transferring one of
the central results of approval-based committee voting to rank aggregation (Peters and
Skowron, 2020; Brill et al., 2023).

Proposition 3. If a ranking is rank-priceable for a profile, it also satisfies uPJR.

Proof. Assume for contradiction that there is a profile R and ranking > = x1,...,Zm
such that > satisfies rank-priceability for R but not uPJR. Since > fails uPJR, there is
an input ranking - and an integer ¢ € N such that R(-) > ¢/(’}) but u(>,>) < . Since
both u(>-,>) and ¢ are integers, the latter inequality means that u(>,>) < ¢ — 1. Next,
let 7 denote a payment scheme verifying the rank-priceability of t>. By Condition (1), we
have that 7(>', x;) < u(>', 2, {x;,...,xm}) for all x; € C and =" € R. Moreover, since
S u(= @i {xi, ..., xm}) = u(>,>) for all rankings >, we conclude that

m

m(mr2i) < ) ulmzi {zi o om}) = u(->) S L 1< R(-) <m> -1

; ; 2
=1 =1

Further, by Condition (2) of rank-priceability, we have that
m n_ (™Y 4
> Yattens(B) X re=(4)-a-ren.
= €R\{>} z:€C ~'eR\{>}
By combining our previous two inequalities, we derive that
S S w(- ) < (?)R(»)—Nr <Z>(1_R(>)) = (7;) 1.
~'eR x;€C

However, this contradicts Condition (4) of rank-priceability. Hence, our initial assumption
is wrong and > fails rank-priceability if it fails uPJR. O

11



Notably, the proof of Proposition 3 does not use the third condition of rank-priceability.
Moreover, Condition (4) of this axiom can be weakened to only require >, o 7(,z;) >
(') - R(>) — 1 for all - € R. When weakening Condition (4) in this way and omitting
Condition (3), rank-priceability is equivalent to uPJR. We nevertheless decided to define
rank-priceability based on Conditions (3) and (4) because these constraints give more
guidance for the design of SWFs. We will next clarify this point with an example

demonstrating the difference between uPJR and rank-priceability.

Example 1 (uPJR does not imply rank-priceability.). Consider the following 6 rankings.

=1 = Y1,Y2,Y3, 21, T2 2 =Y2,Y3,Y1,T1, T2 =3 =Y3,Y1,Y2,T1, T2

=4 =Y1,Y3,Y2,T1, T2 =5 =Y2,Y1,Y3,T1, T2 =6 = Y3,Y2,Y1,T1, T2

Moreover, let R denote the profile given by R(>;) = % foralli e {1,...,6}. uPJR requires
for this profile that the output ranking > agrees in at least L% . (S)J = 1 pair with every
ranking ;. While counterintuitive, this means that the ranking > = x1, z2, y1, ¥2, y3
satisfies uPJR as all input rankings agree that x; > z2. However, this ranking is not
rank-priceable: no ranking is willing to pay for xs, so the input rankings can pay at most
442+ 1=7for x1, y1, and ys. Since the total budget of our rankings is (g) =10, a

budget of 3 is remaining, thus showing that > is not rank-priceable.

Finally, we will introduce the Proportional Sequential Borda rule (PSB). On a high
level, the idea of this rule is to repeatedly choose the candidate maximizing the Borda
score, update the weights of the input rankings, and delete the Borda winner from the
profile. To make this more formal, we assume for every step ¢ € {1,...,m} of PSB that
each ranking > has a budget b;(>~) € R>¢ and that there is a set of remaining candidates
X;. In the first round, it holds that X; = C and bi(>) = R(>-) - () for all = € R,
where R denotes the input profile. Now, in each round i, we choose the candidate z* that
maximizes the Borda score (or utilitarian welfare) U (b;, z, X;) = >, o bi(>=) - u(>=, 2, X;)
among all candidates z;. Next, we place this candidate at the i-th position of the output
ranking and remove it from the set of available candidates (i.e., X;11 = X; \ {z*}).
Furthermore, we assume that the cost of the i-th candidate is m — ¢ and, if possible,
each ranking will pay a share of this cost that is proportional to its contribution to the
Borda score. More formally, each ranking > will pay either (m_i)g((l: ’f::))((;)) bi(-)
remaining budget b;(>-) if the proportional contribution exceeds bi(>—’). Hence, we set
bit1(>) = bi(>) —min((m_i);((l::;::))((;))'bi(}) ,bi(>)) for each ranking > € R. After defining
Xi+1 and the budgets b1 (), PSB continues with the next round until all candidates
are placed in the output ranking. We will next consider an example to illustrate how the
Proportional Sequential Borda rule works.

or its

Example 2 (The Proportional Sequential Borda rule). Let =1= z1, 22, z3, 24, x5 and
—o= x4, Ts5, T1, T3, T2 denote two rankings and let R be the profile given by R(>;) = 0.6
and R(>2) = 0.4. For this profile, PSB will choose the ranking > = z1, x4, x2, 5, 3,
which is witnessed by the following sequence of budgets and profiles.
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6 4

3 3 9 3
Ty X4 i 4 13

T2 T4 P 11
To Xy To Xy e
r3 X1 r3 I3

T4 X3 T5 X3
T4 T3 xr5 T2

5 T2
5 T2

On the left, we show the initial profile R, where the rankings are weighed by the
budgets b1 (1) = R(>1) - (g) =6 and b1(>2) = R(>2)- (g) = 4. Candidate x1 maximizes
the Borda score in this profile as U(by, z1,{z1,...,25}) = 6-4+44-2 = 32. Consequently,
>1 pays % -6-4 =3 and >9 pays % -4 -2 =1, which means that the new budgets are
ba(>1) = ba(>2) = 3. We moreover remove x; from the profile as Xo = C'\ {z1}. In the
second step, x4 maximizes the total Borda score with U (be, x4, {x2,...,25}) = 12, so >
pays % -3-1= % and 9 pays 13—2 -3-3= %. Consequently, the new budgets are given
by b3(>1) = 3 and b3(2) = 3 and 24 is removed. In the third step, 3 maximizes the
total Borda score with U (b3, x2, {2, x3,25}) = % and =1 pays the total cost of 2 since
u(>=2,z2, {2, x3,25}) = 0. Hence, the budgets in the fourth step are by(>1) = % and

bs(2) = 2. Finally, PSB now picks z5 and > will pay its remaining budget of 2.

We note that the total leftover budget in Example 2 is only i, which implies that PSB
is rank-priceable in this example. We will next show that this holds in general, i.e., the
Proportional Sequential Borda rule satisfies rank-priceability and therefore also uPJR.

Theorem 1. The Proportional Sequential Borda rule satisfies rank-priceability.

Proof. Fix a profile R and let > = x4, ..., x,, be the ranking chosen by PSB. Moreover,
we let b;(>) denote the budgets used during the computation of PSB. We will show that
the payment scheme 7 defined by

(=, x;) = bj(>) — biy1(>) = min <(m — ) Ulzéi;:’;f;) “bi(>) , b¢(>)>

forall i € {1,...,m — 1} and all > € R satisfies the conditions of rank-priceability.

Condition (1): Fix a step ¢ € {1,...,m — 1} and a ranking > with b;(>) > 0. It
holds that U(b;, xi, {xi,...,xm}) > (m —i)b;j(>) because x; maximizes the Borda score
and (m — i)b;(>) is a lower bound for the Borda score of the top-ranked candidate of >.
Hence, we derive the following inequality, which shows Condition (1).

(m — )u(>, zi, Xi)bi(>) < (m — )u(>, zi, Xi)bi(>)

m(-, i) < U(bi, 21, X;) - (m —i)b;i(>)

=u(>, zi {xi ..., Tm})

Condition (2): For this condition, we note for all = € R that b1(>) = R(>) - ('3)
and that b, (=) > 0 because 7(>,x;) < b;i(>) for all i« € {1,...,m — 1}. Hence,
S (=, 2) < R(-) - ('y) for all = € R and Condition (2) of rank-priceability holds.

13



Condition (8): Condition (3) is satisfied because it holds for every i € {1,...,m — 1}
that

(m —1) - u(-, z, X;) - bi(-)
ZW(>—,$¢)§Z =m— 1.
~€ER ~€ER U(bi, 2, Xi)
Condition (4): For Condition (4), we will first show that >, 5 bi(>-) = %;’”HH)
for all i > m — 2. Clearly, this is true if i = 1 because >, . bi(>) = (3) > cx R(>) =

%M by definition. Next, we inductively assume that »°, 5 bi(>) = Mgﬁlﬂ)

for some i € {1,...,m — 3} and we let X; = {z;,...,2,}. Since there are m —i + 1
candidates in X, it follows that

m—i . . 9
STS bl ul- e X = S (=) = <(m—Z)(7721—z+1)> |

zeX; ~€R ~-€ER 7=0

Since candidate z; maximizes the Borda score with respect to b; and X;, we conclude that
Ul(bi, zi, Xi) > m%m > wex, Ulbi,z, X;) = W. This implies for all = € R

that (m_i()f‘(giz”fé))bi(H < 4&i;’(£i)fj$) Finally, it holds that m = i+1>4asm—i>3
and u(>,z;, X;) < m — i by definition. We thus infer that (m_Z)Uué:;Z’))((’:))b"(}) < b;i(>) for

all = € R. Since Y. .n (m_i[)Ju(ng’);{))bi(}) = m — i, the total budget in round i + 1 is

Z bit1(>) = Z bi(>-) — (m — 1) -u(~, 2, Xi) - bi(>-)

~€R R U(b’nxth)
_(m—i)m—i+1) |
- 9 —(m—z)
(m—im-i-1)
2

For i = m—2, this reasoning shows that . . b;(>~) = w = 3. Furthermore,

if i = m — 2, we are left with the candidates X,,,—2 = {Zy—2, Tm—1,Zm} and we know
that x,,—o maximizes the Borda score with respect to b,,—s. Now, if

2u(, Trn—2, Xm—2)bm—2(>)

2u(>, Trn—2, Xm—2)bm—2(>)
by =
s 2(>‘)) U(bmfz,fﬁm—%meQ)

for all = € R, our previous reasoning shows that we decrease the total budget by 2. Next,
assume that

min(

2u(>, Trn—2, Xm—2)bm—2(>)
U(bmf% Tm—2, Xm*Q)

min(

) bm—2(>)) = bm—2(>)

for some ranking >~. In this case, we first note that candidate x,,_2 has a Borda score
of at least 222 = 3. Hence, 2“(5(’5::227;)51:’1‘2?))52:22)(” < %bm,2(>) for all > € R with

u(>=, Tm—2, Xm—2) < 1. Consequently, min(2"(5(’5;”__;,;)51‘;%):__22)(}),bm,2(>)) =bpm—2(>)
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is only possible if u(>, zm—2, X;m—2) = 2. Now, let Y denote the set of rankings such
that =€ Y if and only if u(>, z;,—2, X;n—2) = 2. By our analysis so far, it holds that

Z i <2u(>, Tm—2, Xin—2)bm_2(>) ’ bm2(>-)>

TeR U(bm7271‘m727 meZ)

2u(>7xm—27Xm—2)bm—2(>) (2u(>7wm—27Xm—2)bm—2(>) )
- - —bpa(-
Z U(bm—2, Tm—2, Xm—2) Z U(bm—2,Tm—2, Xim—2) 2(>)

-€ER -cY
4
o ( _ 1) S bra(-).
U(bmf2al‘m72,me2) NP

2u(>=,tm—2,Xm—2)bm—
Cipmaime2lOn-2() () = byya(-) for = €V,

— 1) > 0. Hence, the above term is minimized

By the assumption that min(

4
m72,xm727Xm72)

we derive that (U(b

if > ¢y bm—2(>) is maximized. Because ) . oy bp—2(>) < U(bm‘Q’x’;‘Q’X’”‘z) and
U(bm-2,Tm—2, Xm—2) > 3, we get that
2 —2, Xm—2)bm—
Z m1n< u(;7;m 2y AAm Q‘l(m 2(>),bm_2(>'))
SeR ( m—2, Lm—2, m—2)
> 92— ( 4 —1)- U(bm—2, Tm—2, Xm—2)
U(bmea Tm—2, meQ) 2
>9_94 U(bme; -'Emf2aXm72)
2
3
> —.
-2
In summary, we now conclude that we decrease the total budget by at least %, SO

the total remaining budget for the last round is at most 1.5. In this round, we are left
with the candidates X,,—1 = {Zm_1,Zm}, so it holds that u(>, zm_1, X;m-1) € {0,1}.
If U(bp—1,Tm-1,Xm—1) > 1, this means that min(“(>’mm*1’Xm’1)bm*1(>),bm_1(>)) =

U(bm—1,Tm—1,Xm—1)
“(Z’(”;Z:ll’fs:ll);’y’;ll()}) and we decrease the total budget by at least 1. Hence, the

total remaining budget is at most 0.5, which proves Condition (4) of rank-priceability
in this case. On the other hand, if U(by,—1,Zm-1,Xm-1) < 1, each ranking with
u(>, Tm—1, Xm—1) = 1 will contribute its complete budget. Since z,,—1 maximizes the
Borda score, we derive that > cn. o bm-1(=) 2D cp. ooy bmo1(>), so we
reduce the total remaining budget by at least half. Hence, the total remaining budget is

at most 0.75 and Condition (4) holds again. O

As a second fairness property, we will also analyze the average utility that PSB guarantees
to subprofiles, as a function of the size of the subprofile. Intuitively, a proportional SWF
should guarantee to each subprofile S a fraction of the total utility (g‘) that is at least
linear in |S|. We show that PSB meets this condition as every subprofile S is guaranteed
an average utility of at least %' - % by our SWF. We note that Lederer et al. (2024)
have computed an analogous bound for the Squared Kemeny rule, which is, however,

sub-linear and trivial if [S] < 1.
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Theorem 2. Let R be a profile on m candidates and > = PSB(R) be the ranking chosen
by the Proportional Sequential Borda rule. It holds for every subprofile S of R that

m\ |S| 3
|5|ZS <2>'4_16'

Proof. Fix a profile R and an arbitrary subprofile S of R. Furthermore, let > = x1,..., 2y
denote the ranking chosen by PSB and let b;(>) denote the budgets of the input rankings
in the i-th round. To simplify the notation, we will assume throughout this proof
that % = (0. This assumption removes the need to separately discuss rankings > with
R(>) = 0, which do not have any influence on PSB. Our proof will focus on the payments
made by the rankings in S. We thus define by b7 (~) = ;E:gb (>) for all rankings
= € R and i € {1,...,m} the budget of b;(>) that is due to S. Moreover, we let
(=) =b7(=) — b§9+1( -) = %(b@—) bi+1(>)) denote the payment made by > in the
i-th round with respect to S, and by C =", _r c; 9() denote the total payment made
by the subprofile S in step i.

Now, fix around ¢ € {1,...,m — 1} and let X; = {x;,...,x,n}. It holds for all ranking

= € R that

‘ , _ (= Db )u- s, X)
bi(>) — bix1(>) = min ( U (br 1. %) L bi(>)
< (m = )bi(=)u(~, =i, Xi)
This means that ¢ (>~ )- U(b;’fz;x) < R((>)) -bi(>-)-u(>-, xi, ..., X;) for all rankings > € R.

Further, we note that b;(>-) < b1(>) as our budgets are non-increasing and that by (=) =
R(>) - (Tg) Hence, we derive that cf(>) . Ulhiyzi, Xi) < S(-)- (T;) cu(, i, {Tiy . T })-

m—1
By summing over all rankings, it follows that

U bZ7 2 Z
CS i < Z S < > 'U(>',£L’1'7Xi).
-€R

Next, we recall that Y7 (=, 4, {21, ..., Zm}) = u(>,>). Hence, we derive that

m—1

ch sz,:cz, i) <ZZS ( )-U(hwi,Xi)
i=1 i=1 ~€R
=) S(-)- (?) “u(, )
~ER

We will next work towards inferring a lower bound on U (b;, z;, X;). For this, we first
recall that ) . pbi(>~) = w by definition. Moreover, it holds that W =
ZT:_ll m — j. Since we decrease the total budget by at most m — ¢ in each round ¢, it
follows that

sy — m—i)(m—i+1
Zbi(>)zgm—j—z_:m j—Zm_]_ )(2 )

=R
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We next observe that 37 v u(~,z, X;) = ZT:_OZ j= W for every ranking
= € R. Consequently, the Borda score of all candidates in the i-th round is

oD bl )ui(-, 7, Xo) Zbi(>).(m_i)(7”'2”b—i+1)

-€R z€X; ~€R
< (m —4)%(m —i+1)?
> 1 .
Since there are m — i + 1 candidates remaining in the i-th round, this means that

the average Borda score is at least W+H_l) We thus infer that U(b;, z;, X;) >
(m—i)?(m—i+1)
4

because z; maximizes the Borda score in the i-th round. By substituting
this lower bound in our previous inequality, we derive that

ZQ’S'( _Z)( —it D <ZS < >-u(>,>).

=1 =€ER

Next, we focus on the payments C’ZS. For this, let C°¥ = Y ics C’ZS denote the total
payment made by our subprofile S and let k denote the maximal integer such that
cs > (k; U We note that the term W is decreasing as i increases, so we
minimize the left-hand sum if we pay only in late rounds. Moreover, it holds for all ¢
that CZ-S <'m — 1 because the total budget reduction in the i-th step is upper bounded by

k(k+l) <C< (k+l)(l~c+2)

this value. Since , we thus minimize our sum when C’is =m—1

ﬂﬁaﬂieﬂn—k,. —1}mmc7 kl—wﬁ; bktl) o (rl(t2)  RED — f 1,
For a simple notation, we let £ = C* — w and conclude that

g (m—i)(m—1i+1)
e &

=1

Y

Z 4 + 4
m—

k

1=

iy Nm—i)m—i+1) lm—(m—k—1)(m—(m—k—1)+1)
k

Zi (i+1) , (k- 1)(k+2)

4
=1

We will next show that this term is lower bounded by m For this, we note that
a simple induction shows that Z -1, i2(i+1) = + 5k3 + 3’2 + £. Hence, we have that
S 24+ 1) + Lk 1) (k+2) = B 4 32y 32 L k +£(k+1)(k+2). Now, if k = 0, it
holds that £ = C¥ < 1. On the other hand, our sum evaluates to 2¢ = 2C% > C5 (14 C%).

Next, suppose that k£ > 1. In this case, we observe that

Kt 5k 3k* K
—+— + 2
4+6+4+6+€(k+ 1)(k+2)

:<H+%ﬁ+ﬁ+%@+»+ahH0+<

Tt +og g Tk

kK k
3 6
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Next, we recall that £ < k + 1, so £(k + 1) > 2. Further, it is easy to check that
% + % > %2 and that k2 > @ Hence, we further simply our sum to

kK*  5K3  3K*  k

Tt et Tet ik Dk+2)

A 2
> - —

<4+4+4+€kk+1 > (k* 4+ £k +1))

2
Z(k(kﬂ)M) +<k(k+1)+£>
2 2

= C5(C% 4+ 1)

S S
This proves our lower bound, so we conclude that w <Y er SC-)- () u(-, ).
Finally, we note that proof of Theorem 1 shows that the total remaining budget of PSB
is at most 2. In particular, this means that C > Y~ 5 S(>) - (j) — 2. We hence infer
that

(CrerSC-) - (3) - %)(Z>s S(-)-(3) + 1) (-
cu(>, ).
<350 (3)
Equivalently, this means that

(7) Boen )3 Lo () Lo )t
2 4 16 Yreer S +1 T YeerS()

Finally, by noting that > _» S(>) = |S], our theorem follows. O

Remark 3. Additionally to rank-priceability and uPJR, the Proportional Sequential
Borda rule satisfies Pareto-optimality, i.e., if z > y for all input rankings > with R(>) > 0,
then x > y for the ranking chosen by PSB. This follows immediately from the fact that
the Borda score of a Pareto-dominated candidate is strictly less than the Borda score of
its dominator. Furthermore, PSB satisfies a mild monotonicity condition. Specifically,
let R denote a ranking profile and z and y candidates such that = t> y for the ranking
> = PSB(R). If we reinforce z against y in an input ranking, then the ranking >’ chosen
by PSB for the new profile satisfies that x >’ z for all z with z > 2. Less formally, this
means that, when reinforcing a candidate = against a candidate y that is placed lower in
the output ranking, the position of x can only improve.

Remark 4. As a corollary of Theorem 2, we derive that the Proportional Sequential
Borda rule achieves a utilitarian welfare of at least %(7;) — 1%. This follows by choosing
S equal to R. Since the utilitarian Welfare in every profile is upper bounded by (m) this
means that the PSB rule is a 4 + @( 5 )-approximation for the utilitarian social welfare.
This shows that PSB s1multaneously satisfies strong fairness conditions and guarantees
a high social welfare, which is impossible in, e.g., approval-based committee voting or
budget division problems (e.g., Lackner and Skowron, 2020; Michorzewski et al., 2020;
Elkind et al., 2024).
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Remark 5. While PSB computes the winning ranking top-down, one can design an
analogous SWF that computes the winning ranking bottom-up when redefining the utility
u(>=,z,X) by {y € X \ {z}: y > z}|. That is, we now give a score of |X| — 1 to the
least-preferred candidate in X and of 0 to the most-preferred candidate in this set and
we determine in each step the worst available candidate based on these scores. While
this rule seems less intuitive, it satisfies the same proportionality guarantees than PSB.
An analogous observation will apply to all SWFs in this paper because, intuitively, we
generate the same utility for a ranking by placing its favorite candidate at the k-th
position or its least favorite candidate at the (m + 1 — k)-th position.

4.2. The Ranked Method of Equal Shares

We will next discuss our first variant of the Proportional Sequential Borda rule, which
aims at finding more utilitarian rankings while still satisfying uPJR. Specifically, we will
introduce the Ranked Method of Equal Shares (RMES) which simultaneously satisfies
uPJR and guarantees to pick the first || candidates in a highly utilitarian way.

Since the Ranked Method of Equal Shares is closely related to the Method of Equal
Shares (Peters and Skowron, 2020; Peters et al., 2021), we will outline this method first.
Just as PSB, the Method of Equal Shares uniformly distributes a budget to the voters who
use it to buy costly candidates. In more detail, let b;(j) denote the remaining budget of
voter j in the i-th round, u(j, ) the utility of voter j for candidate x, and ¢(x) the cost
of candidate x. The Method of Equal Shares chooses in the i-th round the candidate x*
that minimizes the value p for which ..y min(p - u(z*, j), b;(j)) = c(z*). Furthermore,
after buying candidate z*, the budget of each voter is decreased by his contribution to
the cost of z*, i.e., bi11(j) = bi(j) — min(p - u(z*, j), b;i(j)). Based on the ideas of the last
section, this approach can be easily extended to rank aggregation. Specifically, we will
assume that the cost of each candidate in the i-th round is m — ¢. Then, the Method of
Equal Shares chooses in the i-th round the candidate x; that minimizes the price p such
that -, min(p-b1(>) - u(>, i, {2i, ..., Tm}), bi(>)) = m — i. However, it turns out
that this method fails rank-priceability as a ranking may pay more for a candidate than
the utility it obtains.* We will thus include the term u(>=,z;, {z;,...,2,}) as a third
argument of the minimum.

We now formally define the Ranked Method of Equal Shares (RMES), which iteratively
selects candidates based on the budgets b;(>) of the input rankings and the set of
remaining candidates X;. As for PSB, it holds in the first round that by () = R(>) - (')

4For an example, consider the rankings >1= x1,...,2¢ and o= x,...,x1 and let R be the profile
defined by R(>1) = 2 = 172 and R(>2) = £ = 32%_ Since (J) = 15, the initial budgets of =1 and
=2 are bi1(>1) = R(>1)-15=11.75 and b1(>2) = R(>2) - 15 = 3.25. In the first two rounds, it is easy
to verify that RMES chooses x1 and x2 and that >; will pay the full cost of these candidates. Hence,
in the third step, we have that b3(>1) = 11.75 — 5 — 4 = 2.75 and b3(>2) = 3.25. This means that =3
is no longer feasible because >=1 has not enough budget left to pay for this candidate and >2 gains

no utility from zs. If we do not include the utility u(>,z, X;) in the minimum for computing p, we

would thus buy x4 for a cost per utility ratio of p = m = %. In turn, we infer that >
pays % . % -2 = % ~ 2.64 and >3 pays % . 14—3 1= % ~ 0.36. However, this means that >2

pays more than its obtained utility in this step, thus violating rank-priceability.

19



and X; = C. Now, in each round i € {1,...,m — 2}, RMES identifies the candidate
z; € X; that minimizes the value p; such that

Z min(pi . bl(>-) . u(>,xi,Xi), b,‘(>—), u(>, .%'l,Xz)) =m —1.

Then, we place this candidate at the i-th position of the output ranking, remove x;
from the active candidates, and reduce the budget of every ranking according to its
contribution to the cost of z;. More formally, we set X;11 = X; \ {z;} and bj11(>~) =
bi(>) — min(p; - b1(>) - u(>, x4, X;), bi(>), u(>, z;, X;)) for all >. After this, we proceed
with the next round. Finally, since this approach is only guaranteed to work when | X;| > 3,
we decide the order over the last two candidates by majority voting with respect to the
remaining budgets: if  and y are the last active candidates, we place x ahead of y at the
m — 1-th position of the output ranking if > . . .o\ bm-1(>) = > . cr. yoy Om—1(>).
Otherwise, we put y at the m — 1-th position. As usual, ties can be broken arbitrarily.

Example 3 (The Ranked Method of Equal Shares). Let =1 = x1,x9,x3, 24,25 and
9 = X4, T5, 21,23, T2 and consider the same profile R as in Example 2, i.e., R(>1) = 0.6
and R(>2) = 0.4. If the tie-breaking favors candidates with smaller indices, RMES chooses
the ranking > = x1, x2, x4, x5, 3 for this profile, as verified by the following computations.

6 (6) 4 (4
T x4 6 (0) 4(3)
79 T4 6 (0) 4(1)
€2 T5 €3 T4
— xs x5 - — €3 x5
€3 T T4 T5
T4 x3 x5 €3
T4 x3 T5 x3
s T2
x5 x2

In this figure, we show the input rankings restricted to the available candidates and
weighted by their initial budget b1 (>=). In brackets, we also show the remaining budget
in each round. Analogous to PSB, RMES picks in the first step 1 for a price p; = é, SO >1
pays % -4-6 =3 and >4 pays % -2 -4 = 1. Hence, the new budgets are by(>;) = 3 and
ba(>=2) = 3. In the second step, both 25 and x4 can be bought for a price of p = % = %.
Because we assume that the tie-breaking favors xo to x4, we pick xo next. Consequently,
~1 pays £ -3-6 = 3 and =5 pays ¢-0-4 = 0, which means that b3(>1) = 0 and b3(>2) = 3.

From here on, RMES picks the candidates according to =9 as =1 has no budget left.

We note that in this example, there is always a candidate x; that can be bought for a
finite price. We next show that this observation holds in general as RMES is well-defined.
Moreover, we will also prove that RMES satisfies rank-priceability and thus uPJR.

Theorem 3. RMES is well-defined and satisfies rank-priceability.

While Theorem 3 establishes that RMES is a proportional SWF, we will next show
that this rule is still rather utilitarian. Specifically, we will prove that the first [ |
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candidates of this rule are chosen only based on the Borda scores with respect to the
initial weights. Put differently, RMES agrees for roughly the first quarter of the candidates
with the highly utilitarian ranking obtained by repeatedly placing the Borda winner
in the next available position of the output ranking and removing it from the input
profile. Moreover, these candidates determine roughly % of all pairwise comparisons,
thus showing that a significant portion of the total utility is assigned in a utilitarian way.

Proposition 4. Fix a profile R on m candidates and let > = x1,...,Tm ‘denote the
ranking chosen by RMES. It holds for all i € {1,...,["}]} that py; = T m"{lx_l Y and

T = arg MaXpe(a, .zt U b1, T, {Ti, ., T }).

As our last result on RMES and analogous to Theorem 2, we will present a lower bound
on the average utility of subprofiles ensured by RMES. Interestingly, we will show that
Proposition 4 implies a slightly better guarantee for large subprofiles compared to PSB
because, roughly, this result entails a lower cost per utility ratio in the first steps.

Theorem 4. Let R be a profile on m > 4 candidates, > = RMES(R), and define
&= (m_QL%J). It holds for every subprofile S of R that

()5 -14 if (3)1S] - 0.5 <¢

EZS(>)u(>,>)Z Lom.a- 3 )+&T1'(M§\s\_ﬁ if (5)1S]—0.5> &

Remark 6. To put Theorem 4 into perspective, we note that £ = 1%(’;‘) + O(m).
Thus, when ignoring lower order terms, our result recovers the average utility guarantee
of PSB for the Ranked Method of Equal Shares when |S| is less than 1%. By contrast,

when |S| > % our guarantee for RMES is a convex combination of g'le and (7). In
particular, if |S| = 1, our bound shows that RMES guarantees an utilitarian welfare of

roughly () (3 15+ 1 1% %) = 102 - (3) (where we ignored lower order terms).

Remark 7. PSB is closely related to the Method of Equal Shares by Peters et al.
(2021), too. To explain this, let R be a profile, > = z1,...,z,, the ranking chosen

by PSB, and b;(>) the budgets of the input rankings during the execution of PSB. In
U(bivxiv{xiv---yan})

ranking > and every round ¢ with [{z;,...,z,}| > 4. Since x; maximizes the Borda

score U (b, zj, {xi, ..., Tm}), it follows that PSB chooses in every round i € {1...,m — 3}

the candidate x; that minimizes the price p for which

the proof of Theorem 1, we show tha < b;i(>) for every input

Z min(pb; (-)u(>, x4, {zi, ..., xm}), bi(>)) = m —i.
~€R

Thus, the only difference between PSB and the Method of Equal Shares is that PSB uses
the current budget b;(>-) in the first argument of the minimum whereas the Method of
Equal Shares uses the initial budget by (>).
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4.3. Pair-Priceability and the Flow-adjusting Borda Rule

As our second variant of PSB, we will discuss the Flow-adjusting Borda rule (FB), which
satisfies sPJR. To motivate this rule, we will first show that both PSB and RMES fail this
stronger fairness condition.

Example 4 (PSB and RMES fail PJR). We will consider a profile with 25 candidates

{y,1,...,24,21,...,220} and the following 8 rankings:
1 =T1,22,T3,T4,Y,Z1,---,220 =2 = X2,X3,T4,T1,Y,Z1,---,22
3 = T3, T4,T1,L2,Y,215---5220 -4 = L4, T1,L2,T3,Y,215.-.,220
=5 = Y,220,---,21,%4,T3,%2,T1 =6 = Y,220,---,21,%3,T2,%1,T4
=7 =Y,%20,---,%1,%2, %1, T4, T3 =8 = Y, 2205 ---,21,%1, T4, T3, T2
Less formally, our ranking can be partitioned into 2 groups: the rankings >1,..., >4

rank all z; ahead of y ahead of all z;, order the candidates z; in increasing order of their
indices, and the candidates x; are arranged cyclic within these rankings. Conversely,
the rankings >5,...,~g rank y ahead of all z; ahead of all z;, rank the candidates z;
in decreasing order of their indices, and the candidates z; are also arranged in a cycle
within these rankings. We next note that (225) = 300 and we define R as the ranking
such that R(>-;) = $&2 for all i € {1,...,4} and R(>;) = 55 for all i € {5,...,8}. In
particular, this means that PJR requires that the output ranking > chooses 67.5-4 = 270
pairwise comparisons from the union of 1, ..., 4. However, we have shown with the
help of a computer that, under suitable tie-breaking in the first 5 steps, PSB and RMES

choose the following rankings:

PSB(R) = D>psp = Y, L1, L2, T3, L4, 21, - - - , 210, 220, 2115 2195 2185 212, 213, 217, 2165 214 215

RMES(R)) = DRMES = ¥, T1, T2, T3, T4, 21, - - - 5 2115 219, 2205 - - - , Z12-

It can be verified that both t>pgg and >pues only agree with 269 pairwise comparisons in
the union of =1, ..., >4, thus witnessing a violation of PJR. While the full computations
for these output rankings is tedious, we note that for both rules, the central "mistake"
happens in the first round. In this round, each candidate ¢ € {x1,...,24,y} has a
Borda score of U(by,c,C) = 6120 (where b;(>~) = R(>) - 300). Hence, under suitable
tie-breaking, both rules pick y first. Moreover, for both rules, each ranking >; with
i€ {1,...,4} pays (ﬁ% +20-67.5 = 2 and the rankings >; with i € {5,...,8} each

pay 6%‘210 .24 .7.5 = 32 However, this means that the rankings =1, ..., >4 pay in total

17
% ~ 21.18, even though each of these rankings only obtains a utility of 20 from placing

y first. Put differently, these rankings pay as a group more than their obtained utility, so
they cannot afford enough further candidates to get the utility they deserve.

We note that the problem in Example 4 can also be seen as a flaw in the definition
of rank-priceability: this axiom only precludes that individual rankings spend more
on a candidate than the utility they obtain, but this guarantee does not extend to
groups. To design SWFs that satisfy sPJR, we will therefore present a refined version of
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rank-priceability called pair-priceability. The idea of this axiom is to view the output
ranking > as the set of pairs A(>) = {(x,y) € C?: x>y} and that every pair of this set
needs to be bought for a price of 1 by the input rankings.

Definition 5 (Pair-Priceability). A ranking > = x1, ..., Zy,, is pair-priceable for a profile
R if there is a payment function 7 : R x A(>) — [0, 1] such that

(1) 7(>, (zi,zj)) < u(>,x;, {xi, x;}) for all = € R and (z;,z;) € A(>).
(2) E (wo2;)€AB) T (=, (5, 25)) < (?) - R(>) for all = € R.

(3) Dover (=, (wi, ;) <1 for all (z,x;) € A(>).

(4)

4) Y er Y(iapear) 70 (@i z5)) > (5) - L.

Pair-priceability differs from rank-priceability only in that Conditions (1) and (3) are
formulated for pairs of candidates rather than for candidates. For instance, Condition
(1) now states that a ranking > is only allowed to pay for a pair of candidates (z;, z;)
if x; = x;. Hence, pair-priceability requires a more fine-grained payment scheme than
rank-priceability. Further, we note that rank-priceability rules out the problem observed
in Example 4: the rankings >1, ..., 4 in this example can pay at most 20 for the pairwise
comparisons including y because they all rank y only ahead of 21, ..., zo0. More generally,
we will next show that pair-priceability implies sPJR and that pair-priceable rankings
are guaranteed to exist. Curiously, the proof that pair-priceable rankings exist is driven
by the ranking-matching lemma, one of the central tools in the analysis of the metric
distortion of voting rules (Gkatzelis et al., 2020; Kizilkaya and Kempe, 2022, 2023).

Proposition 5. The following claims are true:
(1) If a ranking is pair-priceable for a profile, it also satisfies sPJR.
(2) For every profile, there is a pair-priceable ranking.

Since the proof of Claim (2) of Proposition 5 is constructive, it directly yields an SWF
that satisfies rank-priceability. In particular, it is possible to define SWFs satisfying pair-
priceability by adapting voting rules designed in the context of metric distortion to rank
aggregation. For instance, one can combine the SimulatenousVeto rule of Kizilkaya and
Kempe (2023) with a budgeting approach to derive an SWF that satisfies pair-priceability
and thus sPJR. However, while we find this direction interesting, we leave the analysis of
such SWFs for future work. Instead, we will suggest another method based on Borda
scores that is pair-priceable.

Specifically, we will now discuss the Flow-adjusting Borda rule (FB). The idea of this
rule is similar to PSB: in each round, we will add the Borda winner with respect to the
current budgets to the output ranking, decrease the budgets of the rankings, and remove
the Borda winner from consideration. To make this more formal, we denote again by
b;(>~) the budget of ranking > in the i-th round and by X; the remaining candidates.
Just as for PSB, we have that b;(>) = R(>) - () and X; = C, where R is the input
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profile. For each round 4, we will then choose the candidate 2* = arg maxzex, U (bi, , X;)
maximizing the Borda score, place it at the i-th position of the output ranking, and
set X;11 = X; \ {z*}. However, in contrast to PSB, FB determines the payments of the
rankings based on a maximum flow in the following flow network G« = (V, E, ¢).?

e The set of vertices V' contains a source s, a ranking vertex v, for every > € R, a
candidate vertex v, for every y € X; \ {*}, and a sink ¢.

e For every ranking >, there is an edge from the source s to the ranking vertex v.
with a capacity equal to the remaining budget of >, i.e., ¢(s,vs) = b;(>).

e For every ranking >~ and every candidate y € X; \ {z*} with z* > y, there is an
edge from vy to v, with unbounded capacity.

e For every candidate y, there is an edge from the candidate vertex v, to the sink ¢
with capacity c(vy,t) = 1.

Now, let f denote an arbitrary maximum flow in G~ that optimizes the maximum
cost per utility ratio of an input ranking, i.e., that minimizes max, ¢ %
(where we assume for simplicity that % = 0). After determining this flow, we set
bit1(>) = bj(>) — f(s,v.) for every ranking > and proceed with the next round. By
this definition, FB only augments PSB by using a more sophisticated payment scheme.
Even more, if possible, every ranking pays in FB the same amount as in PSB because

maxy R % is minimized if f(s,v.) = U(f)lz((;);&;g;’xi) (where v(f) denotes

the value of f). We further illustrate the Flow-adjusting Borda rule with an example.

Example 5 (The Flow-adjusting Borda rule). We consider the following four rankings.

=1 = T2,%3,T1,T4,T5 =2 = I3,T2,T1,T4,T5

=3 = T1,%4,T5,T2,T3 =4 = T1,T4,T5,T3, T2

Moreover, let R be the profile given by R(>1) = R(>2) = 55 and R(>3) = R(>4) = 5.
Assuming that ties are broken in favor of candidates with smaller indices, FB chooses the
ranking > = x1, X9, T3, T4, 5 for this profile, whereas PSB chooses > = x1, x2, X4, T3, T5.
The computation for FB can be verified based on the following sequence of profiles.

SWe recall here some basics for the maximum flow problem. A flow network G = (V, E, c) is a capacitated
directed graph where ¢ : E — R>¢ specifies the capacity of every edge and V' contains two designated
vertices s and ¢ called source and sink. A flow in such a network is a function f : E — R>¢ such
that (i) f(e) < c(e) for all e € E (capacity constraint) and (ii) 32, e f(u,0) =320, wyep [(v,w)
for all v € V' \ {s,t} (flow conservation). The value of a flow f is the net outflow of the source s,
ie., Z<S’U)EE f(s,v) — Z(MS)EE f(v,s). Finally, a maximum flow is a flow with maximum value. To
simplify notation, we will often write f(u,v) =0 if (u,v) € E.

24



Figure 1: The flow network G, used for the first step of FB for the profile R shown in
Example 5. Edges are labeled by their capacity and edges without label have
an unbounded capacity.

r 7 3 3
2 2 2 3 5 5 1 1

2 2 2 2 2
T2 13 T1 I g% % 3 13

xI9 X3 T4 T4 26 26
T3 T2 X4 T4 I3 T4

= I3 X2 Ty Iz — == T4 X4

r1 1 X5 Th T4 T

T4 X4 Ty T2 I5 I5
Ty T4 T2 XT3 rs5 I3

s IT5 X3 T3
s Ty X3 X2

We show in this graphic again the rankings restricted to the available candidates and
weighted by their budget in each round. Moreover, to save space, we collapsed in the
third step the rankings >; and »>9 as well as >3 and >4 into single rankings. Now, in
the first round, it holds for all = € {z1,z2, x3} that U(by, x,C) = 26. By our tie-breaking
assumption, this means that z; is chosen first and we thus need to identify a maximum
flow in the network G, which is shown in Figure 1. In this network, the rankings >
and >9 together can pay at most 2 for x4 and x5 and the rankings >3 and >4 can pay
1 each for x1 and x2. Hence, the maximum flow has value 4 and it can be shown that
the cost per utility ratio is minimized if each ranking pays 1. Hence, the budgets in the
second step are ba(=1) = ba(=2) = 3 and bo(3) = ba(=4) = 1. By contrast, in PSB,
>1 and >, each pay % -2 % = %, which is the main reason for the different outcome.
Starting from the second round on, FB behaves exactly like PSB, because the payments
made by PSB can be transformed into a maximum flow of the corresponding network.
We hence leave the verification of the remaining steps to the reader.
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We will next show that FB is pair-priceable and thus satisfies sPJR. Moreover, we note
that the following statement holds regardless of the exact maximum flow chosen in the
flow network G, i.e., it is not necessary to minimize the cost per utility ratio.

Theorem 5. The Flow-adjusting Borda rule is pair-priceable.

Lastly, we also examine the average utility that FB guarantees to subprofile. Specifically,
we will next show that FB gives the same guarantee on the average utility of subprofiles
than PSB. For the proof of the subsequent theorem, it is crucial that FB chooses the
maximum flow that minimizes the cost per utility ratio in every step.

Theorem 6. Let R be a profile on m candidates and > = FB(R) the ranking chosen by
the Flow-adjusting Borda rule. It holds for every subprofile S of R that

1 m\ |S| 3
S > S(-)u(-,>) > <2> SRl

~€R

Remark 8. Pair-priceability implies Pareto-optimality (i.e., if all input rankings place
x ahead of y, the same must hold for the output ranking) because no ranking can pay for
the pair (y,z) if x = y for all input rankings > with R(>) > 0. As a consequence, the
input rankings can pay a budget of at most (g‘) — 1, thus violating the fourth condition
of pair-priceability. This means that the Flow-adjusting Borda rule is Pareto-optimal.

5. Conclusion

In this paper, we study the design of proportional social welfare functions (SWFs) by
adapting tools from approval-based committee voting and participatory budgeting to
rank aggregation. In more detail, our central fairness condition is called uPJR and
requires that every input ranking with weight « should agree with at least |« (ZL)j
pairwise comparisons of the output ranking. We first show that the Squared Kemeny
rule, which was suggested by Lederer et al. (2024) to proportionally aggregate input
rankings, fails even a weakening of this axiom called uJR. We hence design new SWFs
and, to this end, prove that uPJR is implied by a more structured fairness notion called
rank-priceability. Based on this insight, we design the Proportional Sequential Borda
rule (PSB), a remarkable simple rule that satisfies rank-priceability and thus also uPJR.
Furthermore, we also prove that PSB guarantees to every subprofile S an average utility
that is linear in the size of S, which can be seen as another strong fairness property.

In addition, we suggest two variants of PSB, namely the Ranked Method of Equal
Shares (RMES) and the Borda Rule Adjusting the Flow (FB). RMES allows us to connect our
approach to the Method of Equal Shares, one of the most prominent tools of fair decision
making (Peters and Skowron, 2020; Peters et al., 2021). Moreover, we demonstrate with
this SWF that even rather utilitarian rankings can satisfy uPJR as this rule is guaranteed
to assign roughly 1—76 of the total utility in a utilitarian way. On the other hand, we
show that FB satisfies a stronger fairness notion that extends uPJR to arbitary groups of
rankings, thus further pushing our understanding of proportionality in rank aggregation.
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Our work offers numerous possibilities for future work and we next discuss three
particularly interesting directions. (i) Given our success in designing SWFs that satisfy
variants of PJR in the context of rank aggregation, it seems interesting to analyze stronger
fairness notions. One could, for instance, adopt notions such as EJR or core-stability
from approval-based committee voting to rank aggregation and aim to find mechanisms
satisfying these properties. (ii) Interestingly, while most fairness notions in participatory
budgeting and committee voting focus on groups of voters with similar preferences, none
of our results relies on this idea. Partly, this is because there are multiple ways to define
similar input rankings (e.g., we may consider two rankings similar if they have a small
swap distance or if they agree on a large prefix) and because it is not clear how to exploit
this precondition. However, we would find it interesting to strengthen both our axiomatic
and quantitative results by focusing on cohesive groups of rankings. (iii) Maybe the
biggest restriction of this paper is to define the utility in terms of the pairwise agreement
of rankings. While this approach is frequently encountered in the literature, it, e.g.,
neglects that the first position of the output ranking has often a higher value than other
positions. Thus, it seems appealing to extend our results to more general utility functions.
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A. Proof of Proposition 1

Proposition 1. For all m > 5, there is a profile R and ranking > such that R(>) =
2/(3) and u(~,Sqk(R)) = 0.

Proof. Fix a number of voters m > 5 and let z = LWJ We consider the following
4 rankings: >=1=1x1,%2..., Ty, =2= X1, Tm ---, T2, >3 is a ranking that puts x; last and
agrees with exactly d pairs with >, and >4 puts x; last and orders the remaining pairs
exactly inversely to 3. Based on these rankings, we will now define a profile R used
to prove the proposition. For notational simplicity, we subsequently assume that the
weights add up to (7;) instead of 1. This is without loss of generality since we can scale
down all weights without affecting the outcome. Now, let R be the profile given by

R(-1) = % and  R(=2) = R(=3) = R(+4) = % ((?) - 7;) .

Further, let > denote the ranking returned by the Squared Kemeny rule. We will show
that ©> is equal to the ranking >* = @, ..., x1. This means that the ranking > is without
representation in R, thus proving the proposition. To show this claim, we will introduce
additional notation. Specifically, we denote by A(>=,>) = |{(z,y) € {C\ z1}*: = =
y and y > x}| the swap distance between an arbitrary ranking > and > after removing
21 from both rankings. Furthermore, we define by d =1+ [{x € C'\ {z1}: 1 > z}| the
position of x1 in >. Given this notation, the swap distance of > to an input rankings >;
is (d —1) + A(>,>) for i € {1,2} and (m —d) + A(>;,>) for i € {3,4}. We will next
show the following auxiliary claims.

1) Tt holds that A(>,>*) < (", ).

2) If m € {5,6} and A(>,>*) < $(™;'), then d > 2.
) Ifm >7and A(>,>*) < %(mgl), then d > 2% + 1.
) If m € {5,6} and d > 2, then A(>,>*) = 0.

5) IfIf m > 7 and d > 2% 4 1, then A(>,>*) = 0.

) If A(>,>*) =0, then d = m.

In combination, these observations clearly imply that > = >* when m > 5. We will
next prove our auxiliary claims.

Proof of Claim (1): We will show that A(>,1>*) < 3(™ 1). Assume for contradiction
that this is not true and let > denote the ranking derived from > by inverting the order
over the candidates {2, ...,z } while keeping the position of x; fixed. For instance, if
> = 9, X1, X3, X4, L5, then > = x5, 11, 24, T3, T2. We will show that > has a lower cost
than > with respect to Squared Kemeny. To this end, we note »; orders the candidates
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in {z9,..., 2} inversely to >2 and that the same holds for >3 and 4. Hence, we

compute that

m—1
2

m—1
2

A(>=3,>) = (m; 1) — A(=4,>) = A(=4, ),

A(-1,>) = < > — A(>2,>) = A(>2,>),

A(9,>) = < > —A(-1,>) = A(>-1,>),

m—1

A(4,>) = < 5

> — A(>3,>) = A(>3,>).

Now, the cost of > with respect to SgK, denoted by Csqk(r>), is given by
Csq(>) = R(=1) - (d — 1+ A(=1,5))* + R(=2) - (d — 1 + A(>=2,5>))
+ R(>3) - (m—d+ A(=3,))° + R(=4) - (m — d+ A(>4,>))%.
Furthermore, the cost of > is
Csqk(B) = R(>=1) - (d = 1+ A(-1,5))° +
+R(=3) - (m—d+ A(=3,5))* + R(=4) - (1 — d+ A(=4,5))
=R(-1) - (d— 14+ A(-2,))° + R(=2) - (d — 1+ A(=1,))°
+ R(3) - (m —d+ A(-4,))” + R(=4) - (m — d + A(>3,1>))?

Next, we observe that R(>3) = R(> ) nd R( 1) < R(>2) by the definition of R.

Furthermore, we assumed that A(>,>*) > (™ ) so A(>-1,>) < %(mgl) < A(2,>)

as =9 agrees with >* on the order of {xg, .. xm} and 1 orders these candidates exactly
inversely. Using these insights, we obtain that

Csqk (I>) — Csqr (B>)

= (B(1) = R(=2)) (d = 1+ A(=1,5))° + (R(=2) = R(=1)) (d = 1+ A(=2,5))’
+ (R(>=3) = R(=1)) (m — d + A(=3,))” + (R(=1) = R(>=3)) (m — d + A(>4,>))°
= (R(=2) = R(-1) ((d = 1+ A(=2,2)) = (d = 1+ A(-1,5))°)

> 0.

R(>2) - (d =14 A(>9,55))?

This shows that Cgqx(>) > Csqk(>), which contradicts that > is chosen by the Squared
Kemeny rule.

Proofs of Claims (2), (3), and (6): We will next show that x; cannot be ranked
to highly. To this end, we assume subsequently only that d < m — 1; we will refine this
assumption for the proofs of Claims (2) and (3) later on. Now, we first recall that

Csqx(>) = R(=1) - (d = 1+ A(>1,5))* + R(>=2) - (d — 1 4 A(>2,1>))?
+ R(>3) - (m—d+A(=4,0)2 + R(>=4) - (m — d+ A(>4,>))?.
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Next, let >’ denote the ranking derived from > by moving x; one position down
without reordering any other candidates. This means that x; is now the (d + 1)-th best
candidate and that A(>,>') = A(>,>) for all rankings > € R. Hence, the cost of >’ is

Csqx(B') = R(=1) - (d + A(=1,5))% + R(=2) - (d+ A(=2,1>))*
R(=3)- (m—d—14A(=4,))>+R(>4) - (m —d — 1+ A(>4,>))%.

_l’_

We aim to show that Csqk(>) — Csqx(>') > 0. This means that > cannot be chosen by
the Squared Kemeny rule as >’ has a lower cost. Based on simple calculus, we infer that

Csqk () — Csx (')

=R(>1) - (—2d —2A(>1,>) + 1) + R(>2) - (—2d — 2A(>2,>) + 1)

+ R(>3) - (2(m —d) + 2A(>3,0>) — 1) + R(>4) - (2(m — d) 4+ 2A(-4,>) — 1)
Next, we note that A(>1,>) + A(>2,>) = (m2_1) and A(>-3,0) + A(-4,>) = (m2—1)7

because 1 and >3 (resp. >3 and >4) order the candidates in {xa, ...,z } inverse to
each other. Furthermore, using the definition of R, we derive that

Csqx(>) — Csex (') :% (—2d — 2A(>1, 1) + 1)

+ % <(7:> - ’g) (=2d — 2A(+9, ) + 1)

3 \\2
+% <<72n> —Z‘)  (2(m — d) + 2A(-4,55) — 1)
()2 () 10)
BUERONeE 1
(a2 5) (")
2 ((2) o 3) 1)

2(6() ) (") o)

In the first equality, we substitute the definition of R(>;) for ¢ € {1,2,3,4}. In the next
equality, we rearrange the terms: the first line captures all terms that are independent of A,
the second line uses that 3(('y) — ) — 2 = 1 () =42 and Z2A(-1,>) + 22 A(9,>) =
2m (m2—1)’ and the third line applies the same idea for A(~3,>) and A(>4,>). Finally,

5
the last line follows by rearranging our terms.
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We now process with a case distinction with respect to m and A(r>, >*) to prove our
three claims. To this end, we further note that A(>2,>*) = 0 as >3 and >* agree on
the order ov {xa,..., 2y }. This means that A(>,>*) = A(>2,>).

Claim (2): We assume that m € {5,6} and A(=2,>) = A(>,>*) < 1(";") and
aim to show that Csqr(>) — Csqx(>') > 0 if d < 2. To this end, we observe that the

assumptions that A(>9,>) < %(m; 1) and d < 277” implies that

Csqx(>) — Csax(>')
4m m m idm [m 1/m 4m 1/m 4m m—1
> — - - - = +—+ (3 -
F(G)-5) -5 0)-s0) GG -%) (7))
_((m) _Am) (m=1)  dm L (m)
S \3\2 15 2 15 3\2 15
Since m > 5, it holds that (m; 1) > 6, so our formula further simplifies to

20m 1/m 4m?
B N> m a4 _Ee
Coqe(>) = Csqx(>) = 2(2) 5 3 (2) 15

100 1 m) 100 __

Finally, for m = 5, this term evaluates 2(2) - 35 — 3(2 — 95 = 13—0. Moreover, for

m = 6, we derive that 2(2) — % — %(g) — % = % — % > 0. Hence, in both cases, >’

has a lower cost than >, contradicting that > is chosen by the Squared Kemeny rule.

Claim (3): Next, we assume that m > 7 and A(>=2,5>) = A(>,>*) < (™). This

time, our goal is to show that Csqx(>) — Csqx(>') > 0 if d < 22 4+ 1. Analogous to Claim
(2), we derive that

Csqx (>) — Csgr (>)
2()-5)-2(0) ()16 5 G -8) ()

m m m — m m m m2
B <i1’><2>_415)( 2 1)+415_2<2>_;(2>_415 '

Furthermore, it holds that (m; 1) > 15 as m > 7, which implies that

/ m 4m m 1/m 4m?
CSqK(D)—CSqK(>)>5< ) —4m+15—2<2> —3<2> _T5'

2
:§'m(mfl)_4m Z17771_47712
3 2 15 15
1
2—6m2—6m
1
> 0.

The last inequality here use the fact that m > 7. This proves again that Cgg(>) —
Csqk ('), so d > 2 + 1 in this case.
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Claim (6): Finally, we suppose that m > 5 is arbitrary and that A(>,>*) = 0. In this
case, we will show that d = m. To this end, we assume that d < m — 1 and show that
Csqx(>>) > Csqx(>'). Our assumptions imply that

S (()-5) () 2(5) 5 (0) 5 G- %))
GO -5)- () -G () - -5 00)

Now, for m = 5, this term evaluates to

2 85 2.5 4.52 4.5 1 126

Z.10-—)-6—-""-10+2-10— — 2 .10=44—- = =2.

<3 0 15) 0 3 0+ 0 15 + 5 3 0 3
Further for m = 6, we get that

2 8-6 2.6 4.62 4.6 1

Zo15—-—)-10—-=——-154+2-15— — 2 .15=98—173=25.

<3 5 15) 0 3 54 5 5 + 5 3 5=98—73=25

Finally, for m > 7, we observe that 2(?) — % + 41%” — %(T;) > 0. Hence, we have that

-t (1)) (5 )2 2
2 (m m—1 6m (m
-5 () ()5 0)

For the second inequality, we replace the term —%m(mg 1) with —%m(?) Further, it
holds that %(mz_ 1) — %” > 0if m > 7. Specifically, for m = 7, this can be straightforwardly
verified and the term is increasing in m when m > 7. Hence, it holds for all m > 5 that
Csqx(>) > Csqx(>') if d < m —1 and A(>,>*) = 0, which shows that d = m under these
assumptions.

Proofs of Claims (4) and (5): Finally, we will show that, when z; is placed low in
>, then A(>, >*) = 0. To this end, let >’ denote the ranking derived from > by ordering
all candidates in {xs, ...,z } according to >* without changing the position of z;. We
aim again to show that Cgq(>) > Csqr(>').

We first consider the cost caused by >3 and 4. Because >3 and >4 disagree on the
order over all candidates, it holds for all rankings > with 14+|{z € C\{z1}: z>121}| =d
that the cost caused by >3 and >4 is

m—1

R(=3) - (m —d+ A(=3,1))* + R(>=4) - (m — d + < 2

) - A(>—3, Dl))z.
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Using the fact that R(>-3) = R(>4), this is equivalent to

R(>3) - ((m —d+ A(=3,0>1))* + (m —d + <m2— 1> — A(>3, >1))2>.

=R(>3) - <(m — d)2 +2(m —d)A(>3,>1) + A(>-3, >1)2 + (m— d)2

+2(md)((m2_ 1) — A(3,>1)) + (<m2_ 1> A)2>

m—1

:R(>—3)<2(md)2+2(md)< ) ) + 28 (-3, >)? 2A(*3’>1)<m2_ 1) " <m2_ 1>2>

By considering the first order condition with respect to A(>3,>1), it is easy to see

that this term is minimized when A(=3,>1) = 1(","). Since quadratic functions grow

symmetrically from their minimum, this mean28 that the cost caused by >3 and >4
is minimal if A(>3,A1) = L%(mgl)J We finally note that A(>-3,>') = A(>3,>%) =
L% (m; 1)J The first equality here follows because >’ and > agree on the order of the
candidates {xa,... 2z }. The second equality holds because >3 is chosen such that it
agrees with 1 on exactly |3 (mgl)J pairs over {z2,...,Zn}. Since >* and >; order
the candidates in {x2,..., 2y} exactly inversely, this shows that A(=3,>*) = |4 (mgl)J
This means that the cost caused by =3 and =4 is weakly less for >’ than for > as >’
minimizes the cost for these rankings.

Next, we turn to =1 and >5. The cost caused by these rankings for a ranking 0> is
2 m—1 2
R(>~1) - (d — 1+ A(, >1)> + R(>2) - <d -1+ < 5 ) — A=, >1)>
:R(>‘1) : <(d - 1)2 +2(d — 1)A(>—1, >1) 4+ A(>1, D1)2>

© R() - <(d —1)? 4 2(d - 1)(<m2_ 1>

— A(=1,>1)) + <m2_ 1>2 - 2<m2_ 1>A(>1, >1) 4+ A(-1, >1)2>.

We next consider the function f that interprets the above term as a function in
A(>1,r>1) and ignores all constant terms. Specifically,

f(z) = R(>1) - <2(d — D+ m2> + R(>2) - ( —2(d—1)z -2 <m2_ 1>x - x2>

We next aim to analyze the minimum of f(x), which then gives insight into the optimal
swap distance for our above expression. To this end, we first note that the second
derivative of f is a positive constant, so the value of f is decreasing until we reach the
minimum. Next, we compute the derivative of f:

f'(x) = R(>1) - (2(d -1)+ 2x> + R(>=2) - < —2(d—1) - 2(’”2_ 1) + 2$>.

37



We aim to show that f/(("™, 1)) < 0 as this means that the optimal value of A(>
,>1) = (mgl) Recall to this end also that A(>1,>1) < (mgl) for every ranking 1. To
this end, we observe that f/(("; ")) = 2R(=1)("; ") — 2(R(=2) — R(=1))(d — 1). We
next consider Claims (4) and (5) separately.

Claim (4): First, we assume that m € {5,6} and d > 2. Now, if m = 5, this means
that d > 10/3. Furthermore, as d is an integer, we derive that d > 4. By using the
definition of R(>1) and R(>2), we now compute that

(=5 () 2 GG) -5) -5 ) e
§2-6—2~<;(10—1)—1>-3
=0

Similarly, for m = 6, the condition that d > QT’” means that d > 4. Using again that d
is an integer, we get that d = 5. Hence, we compute in this case that

, (m—1 2m (m —1 1 m m m
= — -2 = - — | -= -1
/ (< 2 >) 5 < 2 > <3 2 5 5 (d—1)
12 1 6 6
<—-10—-2-[-(1b—=)—=) -4
) (3( 5) 5>
_ —16
5
Hence, in both cases, we get that the minimum of f is reached for = > (m; 1). Since f
differs from the cost of a ranking > only in constants, this means that the ranking >’

also minimizes the cost caused by =; and 9. Put differently, if m € {5,6} and d > Q?m,
it holds that A(>,>1) = (™), which equivalently means that A(r>,>*) = 0.

Claim (5): As the second case, we suppose that m > 7 and d > QTm + 1. In this case,
we get that

(")) 2 6(G) %) -3) %

_2m m—1 dm (m +16m2
5 2 9 \ 2 45

<m — 1) _4m(m 1) N 16m?

_(2m  4m

_<5_9) 2 9 45
2 (m- A4m?  4dm

‘45< ) >‘45 o

< 0.

In the last inequality, we use that % > %" because m > 7. Hence, we have also in
this case that f is minimized for some value z > (", 1), 50 Csqx(>) > Csqx(>'). This
completes the proof of our last auxiliary claim. O
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B. Proofs Omitted form Section 4.2

Theorem 3. RMES is well-defined and satisfies rank-priceability.

Proof. We fix a profile R and show both claims of the theorem independently.

Claim 1: RMES is well-defined.

To show that RMES is well-defined, we need to prove that for each round ¢ € {1,...,m—2},
there is a candidate x with p, < oco. In particular, note that MES is obviously well-defined
in the last round as we simply apply the majority rule for the remaining two candidates.
Now, fix some round i € {1,...,m — 2} and assume that a candidate was bought in all
previous rounds. Clearly, if ¢ = 1, this assumption is true and it will hold inductively for
i > 1. Moreover, let X; denote the candidates that have not been placed in the output
ranking yet, b;(>~) the remaining budgets, and b;(>) the initial budgets. We first note
that for every candidate x € X; and ranking > € R, it holds that

min(by (=) - u(>, x, X;),b;(>), w; (>, z, X;)) = min(b;(>), u; (>, z, X;)).

In more detail, if u(>, z, X;) = 0, then clearly min(by (=)-u(>, z, X;), b;(>), u; (>, x, X;)) =
u(>,x, X;) as all other values are non-negative. On the other hand, if u(>,z, X;) > 1,
then by (>)u(>,z, X;) > b;(>) since b1 (>) > b;(>~). Hence, to show that there is always
a candidate that can be bought for a price of p, < 00, it hence suffices to show that there
is always a candidate x such that ), _p min(b;(>),u(>,z,X;)) > m — i, because this
means that x is affordable for a price p < 1.

Now, to prove this claim, we first recall that the total initial weight is ), . b1(>) =
(ZL) and that we decrease the budget by m — j in all rounds 7 < ¢ < m — 2. Hence,

the total remaining budget at the i-th round is > . bi(>~) = w Next,
we proceed with a case distinction and first suppose that there is a ranking >* such
that b;(>*) > m — i — 1. Furthermore, let x denote the top-ranked candidate of >*.
If it even holds that b;(>*) > m — 4, then this ranking alone can afford x by itself
because both b;(>*) > u(>*,z,X;) = m —i. On the other hand, if b;(>*) < m — 1,
then min(u(>*,z, X;),b;(>*)) = b;(>") > m —i — 1. Next, let Z denote the set of
rankings >~ such that ~#>* and u(>,z,X;) > 0 and let B = . _, b;(>~) denote the
total remaining budget of these rankings. If B > m — i — b;(>"), = can again be
bought. In more detail, if there is a ranking > € Z with b;(>) > 1, then min(b;(>~*
), u(>~*,z,X;)) + min(b;(>),u(>,z,X;)) > m —i. On the other hand, if b;(>) < 1
for all = € Z, it holds for each of these rankings that min(b;(>-), u(>,x, X;)) = b;(>).
Consequently, min(b;(>=*), u(>*,z,X;)) + > ¢, min(b;(>),u(>*,z,X;)) > m —i. As
the last subcase, suppose that B < m — i — b;(>=*) and let y denote the second-best
candidate in X; with respect to =*. Since b;(>=*) > m — i — 1 by assumption, it holds
that min(b;(>*), u(>*,y, X;)) = u(>*,y, X;) = m — i — 1. Furthermore, we observe that
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all rankings in R\ (Z U {>*}) bottom-rank x. Moreover, we have that

(m—1i)(m—1i+1)
> bi(>-) = - > b(»)
=ER\(ZU{>*}) 2 —eZU{>*}
(m—d)(m—i+1)
2

— (m —1)

> 1.

Here, the first inequality follows because B < m —i — b;(>*) and the second one because
m — i > 2. Further, we note that u(>,y, X;) > 1 for all rankings > € R\ (Z U {>*})
because y > x. Based on an analogous case distinction as for x when B > m —i —b;(>*),
one can now show that y can be afforded.

As the last case, suppose that b;(>) < m —i — 1 for all = € R. We will consider
the total score of the candidates x € X;. To this end, we will partition the rankings
with respect to their remaining budget: B, denotes the set of rankings > € R such that
¢ —1 < bi(>) < . By our assumption that b;(>) < m —i — 1 for all rankings >, it
holds for each = € R that >~ € W, for some ¢ € {1,...m —i — 1}. Hence, we derive
that o min(bs(=), u(-, 2, X;), w(>=)) = S5 S o, min(bi(=), u(>=, z, X;)) for
all z € X;. Further, if = € W, then min(b;(>),u(>,z, X;)) = bi(>) for all z € X;
with u(>,z,X;) > ¢. Now, there are m — i + 1 candidates in X; as we removed
i — 1 candidates in the previous rounds. Consequently, we have for all = € W, that
min(b;(>), u(>, z, X;)) = b;j(>~)) holds for m — i + 1 — ¢ candidates. Using these insights,
we compute that

Z Z min(b;(>), u(>,z, X;)) = Z _Z min(b;(>), u(>, z, X;))

zeX; ~€R zeB (=1 =W,

The first and second line here use our previous insights. Next, we use that (m+1—i—/) >
2 since £ < m —i — 1 and that 37" > ew, bi(=) = >, eg bi(~). Finally, since the

total remaining weight is ng_iﬂ), the last step follows. Note that, since there are

m — i+ 1 candidates in B, there must be one such that ). _ min(b;(>), u(>,z, X;)) >
m — i. Hence, ew now conclude that RMES is well-defined during the first m — 2 steps.

Claim 2: RMES satisfies rank-priceability.
Consider the ranking > = z1,..., 2z, chosen by RMES for our input profile R. More-
over, let p; denote the price for which candidate x; is bought for all i € {1,...,m — 2}
and let b;(>) denote the budget of ranking > in the i-th step. We will analyze the
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payments scheme 7 defined as follows: for i € {1,...,m — 2}, we set w(>,z;) =
min(p;by (Z)u(>, zi, {zi, ..., zm}), bi(>), u(>, zi, {xi, ..., zp})) for all >=. Further, for
i=m—1, we set (>, x;) = by—1(>) if Ty—1 > Ty and 7(-, z;) = 0 otherwise. Finally,
the definition of rank-priceability requires that 7(>, z,,) = 0 for all > € R.

We first note that Condition (1) of rank-priceability is satisfies for all i € {1,...,m —
2} because 7(>,z;) < u(>,z;,{x;,...,zm}) by definition of our scheme. Further,
when i = m — 1, then it holds that ) . _pbi(>~) = 1. Since 7(>,z;,-1) = 0 if
u(=, Tm—1, {Tm-1,Tm}) and (>, xpm—1) = b—1(>) < Lif u(>, -1, {Tm-1,2m}), Con-
dition (1) also holds in this round. Secondly, since 7(>~,x;) < b;(>~) in every step and
bi(=) = R(>) - (%), Condition (2) of rank-priceability follows. Condition (3) of rank-
priceability follows immediately from the definition of RMES because we pay exactly m — i
during all rounds @ € {1,...,m—2} and at most 1 in the m — 1-th round because the total
remaining budget is 1. This also implies Step (4). In more detail, before the m — 1-th
step, the total remaining budget is 1 and we spent at least half on x;. Hence, the total
remaining budget in the end is at most 0.5. Because the total initial budget is (’;), this
means that the total payments sum up to at least (”21) — 1. Hence, rank-priceability is

indeed satisfied. O
Proposition 4. Fix a profile R on m candidates and let > = x1,...,Tm ‘denote the
ranking chosen by RMES. It holds for all i € {1,...,["}]} that py; = T m"g;l Y and
T = arg MaXpe (g, .zt U (b1, T, {Ti, s T }).

Proof. Fix a profile R, let > = x1, ..., z,, denote the ranking chosen by RMES, and let
Xi ={wi,...,xn} for all i € {1,...,m}. We first note that the lemma is trivial for
m < 3 because || = 0 in this case. Hence, assume that m > 4. We will show the lemma
by induction and fix a round i € {1,..., (1 — §)m]}. We inductively suppose for all

rounds j € {1,...,7—1} that p; = U(bTi;ij and x; = arg max,ex; U(b1, x, X;). Clearly,
when 7 = 1, this assumption is true as there were no previous rounds. The central idea

of our proof is to show for every input ranking > € R that

min <(m —1)b1 (=)u(>, i, X;)

(m — 1)1 (=)u(-, i, X;)
U(bl,xi,Xi) :

U(b17 Ti, Xz)

,bi(>-),u(>,x¢,Xi)> —

This implies that x; can be bought for a price of p; = ﬁ Furthermore, if there
was an candidate xj with U (b1, xg, X;) > U(b1, z;, X;), this candidate could be bought
for a price of U(b;ﬂ?a;:, Xy < U(bﬁ;f X)) which contradicts that RMES chooses candidate z; in

the i-th round. So, it follows from our claim also that z; is the candidate £* maximizing
U (bl, x, Xz)

To prove the above equality, we fix an input ranking > € R and let z* denote the
candidate maximizing U (b, z, X;). We will first show that w#%bﬂ%)u(h ¥ X;) <
u(>,z*, X;). For this, let  denote the top-ranked candidate among X; with respect to .
It holds that u(>,x, X;) = m — i as there are m — i 4+ 1 candidates remaining. Since z*
maximizes the Borda score, it follows that U (b, z*, X;) > U(b1,z, X;) > bi(>) - (m — 7).

Hence, mbl(>)u(>,x*,Xi) < u(>,2*, X;) as required.
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Next, we will show that 71)1( Ju(>, x*, X;) < b;j(>). To this end, we observe
that, by the induction hypot&wsm it holds for all input rankings > € R that

i—1

bi( b1 (>')(>'vxj’Xj)'

M

= U bl,l‘J,XJ)

In particular, each ranking = pays Uv(b#_j{)(j)bl(P)u(}’xj’Xj) in every round j €

{1,...,i— 1}. If this was not the case in some round j, candidate x; could not have

been afforded for a price of % as the total payments do not add up to m —i. By
ygsrg

combining our insights and dividing by b;(>), it suffices to show that

1—1

m — 1
T (-2t X))
U(by, 2", X;) u(-, 2" ;Ubl,x],xj)

(>7$j7Xj)'

For this, we observe for every round k € {1,...,m—1}that > . > cp bi(=)u(~, 2, X3) =
> er bi(>) (m_k)(;n_kﬂ) = m(";_l) : (m_k)(;”_k+1). Since z* maximizes the Borda score
m(m—l)

4

in the i-th round, this means that U (b, z*, X;) >
lower bounded by the average. In turn, it follows that

(m —1) as the maximum is
Analogously,

<
(b x* X = m(m 1)°
it follows for all candidates x; with j € {1,...,7—1} that U(b1, z;, X;) > W-(m—j).
Using these insights, it follows that

m—1 4
—_ X)L — * X d
U(bl,x*,Xi)u(hx , X;) < oy l)u(>,x , Xi) an
i—1 .
m—j
1-— g ———u(> )>1-— E u(>, X
j:1 U(b]_,ff],X])U( 7xj? J_l m x]? J)

We will show that ﬁ u(>, z* X-) <1- 23;11 ﬁu(hxj,Xj). Equivalently,

we can prove that u(>,x*, X;) + Z] Lu(-, 25, X;) < M To this end, we note that
u(-, 2", X;) <m —i and u(>-, z;, X;) <m —j for all j E {1,. — 1}. Hence, this

m(m 1)

inequality is satisfied when " je1m—J <

Z;”:ll j— Z;n:_ll_lz = m(n;_l) - (m_i)(g”_i 1). Consequently, we can further reduce our

problem to showing that

. Next, we compute that Z - m—j=

m(m—1) (m—di)(m—i—1) <m(m—1).
2 2 - 4

Finally, we will use that ¢ < ¢ and that m > 4. In particular, this implies that

(m—i)(m—1i—1) - dm(3m _q) _ 9m? _3m _m(m—1) +m72_m - m(m — 1)
2 - 2 o332 8 4 32 8~ 4
Hence, it indeed holds that m(”;_l) — (m_i)(;n_i_l) < m(ﬁ_l). O
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Theorem 4. Let R be a profile on m > 4 candidates, > = RMES(R), and define
&= (mfzth). It holds for every subprofile S of R that

(’5)-@—% if (1)S]—05 < ¢

S(- . s
|5‘§e 3o(3) (- i) + S s — e i (3)1S] - 05> ¢

Proof. Let R and S be defined as in the theorem and let > = x1,...,x,, denote a
ranking chosen by RMES for R. As usual, we let X; = {x;,...,2,,}. By the definition of
RMES, there is for every candidates z; € {z1,...,Zm_2} a price p; for which it is bought
and we define p,,—1 = 1 for notational ease. Moreover, let b;(>) denote the budget
of every input ranking > € R in the ¢-th round. In particular, bi(>) = R(>) - ('3)

2
for all = € R. Next, we let b7 (>~) >)b (>) for all > € R. As in Theorem 2, we
assume here (and henceforth) that

)
)

j R(>)
0
let ¢f (=) = b5 (=) — bS,, (=) = 2=

= 0 for the sake of simple notation. Finally, we
R=) - min (plbl( ) (> xi,Xi),bi(F), (>,xi, z)) be the

payment of a single ranking = and C2 =3 R((H)C'S (>).
Now, analogous to the proof of Theorem 6, it can be shown that

<3 Y B x) = 3 6 ()

=1 »€R ~-€R

We will next work to derive upper bounds for all prices p; since this allows us to
lower bound our left hand sum. First, it holds that p,,—1 = 1, so we are done with
this case. Similar, we will use that p,,_o < 1 as we have shown in the proof of ?? that
there is a candidate that is affordable for this price. Secondly, Proposition 4 shows that

pi = m for all + € {1,...,[]}. Moreover, we have shown in the proof of this

proposition that U (b;, z;, X;) > W, so p; < ﬁ for these rounds. Finally,
for i € {|} +1],...,m — 3}, we note that b;(>=) < by(>) for all . This implies for all
candidate x € X; and all values of p > 0 that

Z min(p . b1(>-) . U(%,l’,Xi), bi(>),u(>-, J}j,Xi))

> Z min(p - bz<>-) . u(>,xj,Xi),bi(>),u(>,mj,X,»)).

Now, let p and p’ denote the minimal values for which there are candidates x, 2’ € X;
such that >°, _ min(p-b1(>)-u(>,z, X;),b;(>), u(>,z,X;)) =m—iand >, 5 min(p'-
bi(>) - u(>, 5, Xi),b:(>), u(>,z;,X;)) = m —i. By our previous observation, we de-
rive that p < p/. We will next show that there is a candidate x € X; such that
Z>€Rmin(m “bi(>) - u(=, 2, X5), 0:(>), u(>, z;, X;)) > m — i, thus proving

/
that p < 0’ < = hm=y-

For this, we first observe that ). . b;(>-) = % as the initial total budget is
m(n;_l) and we pay m — j in each round j € {1,...,7 — 1}. Now, if there is a ranking >
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such that b;(>) > %, we can choose z as the top-ranked candidate in >. Since
there are m — i+ 1 candidates remaining, it holds that u(>, z, X;) = m — . Furthermore,
we have that b'(>~) > (m— Hl)( =) > 4(7172) =m —i as i < m — 3. Finally, we observe
that m bi(>) - (>— z, Xi) > u(>,x, X;) = m —i. Hence, the ranking > itself

is able to buy x for the price of m

As the second case, suppose that b;(>) < W for all > € R. In this case, we
first note that m_ifmbi(>)u(>,m,X¢) < u(>=,z,X;) for all = € R and z € X; as
4 -b;i(>~) < 1. Moreover, because m—i+1 > 4 and u(>, z, X;) < m—i, it holds

(m—i+1)(m—1) ' '
that m u(>_7$j7XZ) < 1, SO m . bl(P)U(>‘,$],Xz> < bl(>') We now

bi(>) - u(>>, xj, X;) for all candidates € X; and rankings > € R. Next, we compute
that

_z-|- Z Z min ( _Z-_+_41)(m_i)bi(>)u(>7ani)7bi(>)vu(>aani>>

zeX; ~€ER

Tm—it1 ZZ —z—l—l)(m i) bi(-)u(-, 25, Xi)

—-ER xeX;

:( _Z)( i1 QZb ]z;)]

=cR
LTS
_Z+1 >€R

=m —1

This means that at least one candidate is affordable for a price of SO

4
(m—i+1)(m—i)°’
p<p < m holds also in this case.

Using our bounds on p;, we conclude that

L%

=3

CSm O oSm—i+1
17+ P l+ )(m )+C§L,2+C,i,l <> bs(=)u(-, ).
i=1 i=[ 2] +1 ~€R

Next, let C% = Z:’;l C’is denote the total payments made by S. We note that
C% >3 b7 (>)—0.5 as the total remaining budget of RMES is at most 0.5. Furthermore,

let k denote the largest integer such that C'S > (kH) . We proceed with a case distinction
regarding C° and first assume that C' < 3. In this case, we minimize the left-hand
side of our inequality if ¢; = 0 for all ¢ € {1,...,m — 3}. Hence, we derive that

Z}(igz b§(>h) —05<C% <3, cp bs(=)u(>,>). By dividing by >, o b7 (=) = [S|(73),
we derive that

1 1
1—W§W' ZS(>')'U(>'7>)
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Now, to prove our theorem in this case, we first note that Yo er S(-) u(=,>) >

(y) - @ — & holds trivially if |S] < (%)~ ! because @ — % <0 int his case. Next, we
note that C < 3 implies that |S| < 2(2)71. We can thus prove our theorem in this
case by showing that ( ) @ — % <1- m Equivalently, we can show that

2y ) |S12—9("y )]S | +4 < 0. Since the left-hand term IS a quadratic functlon it suffices

tonotethat2(2) 1S)? — (2)]S\+4:01f\5’]:4(2) and |S| =1(%)" ' This proves

our inequality, so the theorem holds in this case.
71 CSm(m-1)

Next, suppose that 3 < C < & In this case, we minimize ZZ e+
S g s
Z:‘Z%JH M + C35 5+ C5 | if the group S only pays for candidates
4

chosen in late rounds. However, it holds that C’iS < m — ¢ as the i-th candidate
has a cost of m —i. Hence, we minimize our sum by setting CS = m — ¢ for all

i€{m—k,...,m—1}and C5_ 170_@ SmceC’;?ll:landC 9 =2,80
it holds that C’;?L_Q + C’;?L_l = %C %C;fl_l ; 3420m 9+ 2 cm 1 — 5. Further,

by the assumption that C < e = ( L%J)(?_LZJ D _ Z;nZIL J j, we derive that

k <m — [ —1 and this inequality is strict unless CS = £. Hence, it holds that C’is =0
foralli e {1,...,[F]}. Next, let £ = cS— @ By our reasoning so far, we have that

m—1 . . .
i;k(ml)(mi)(mZ+1)+€(k+1i(k+2) —;§£65(> (e

Next, we note analogous to the proof of Theorem 2 that

m—1
m—i)(m—i+1)+4k+1)(k+2)
=m—k

~.

> (i 1)+ Lk + 1) (k+2)

=1

k* 5k 3k* K

4+6+4+6+£(k+ )(k+2)

kY 2k K2 kK k

<4 + otk ))+€(k:+1)>+<3 o g Ukt ))

We observe that ¢ < k 4 1, so £(k 4+ 1) > ¢2. Furthermore, since k > 2, it holds that
% + % > %2 +1 and k2 > k(kTH) Hence, we derive that

o, kY 2k k2
;zQ(z+1)+€(k:+1)(k+2)Z <4 +4+4+€k:(k:+1))+€2>+(k2+1+€(k:+1))
k(k+1) >2 (k(k+1) )
>< +0) + | ——+1)+2
- 2 2
C(C% 4 1) + 2.
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Substituting this into our original inequality shows that % <D eer by (= )u(=, >).
Finally, from here on, we can complete the proof analogously to the proof of Theorem 2.

] Cfm(m-1)
As last case suppose that C > £. In this case, we minimize the sum ZZ 5 — +

cs +1 .
ZZZLS%JH w + C5_5 4+ C5_4 by setting CF = m —i for all i € {|% +
1],...,m — 1} and distributing the remaining budget arbitrarily on the rounds i €

{1,..., L%J} We note that this means that we spend a budget of ¢ in the rounds
{13 +1],. —1}. Hence, we can use the computations from the previous case to

derive that 1 +24 50 (m_i)(mj)(m_iﬂ) > g(fjl).
by assuming C°¥ = ¢ and repeating our argume%‘c. On the other hand, in the rounds
ic{l,...,["}}, we obtain a utility of W Zflj CP = W(CS —¢). In summary,
we conclude that

m(m—l)(cs_€)+f(f+1 <st ().

4
-€R

This follows effectively

zm|_m

Next, we use that C* > ('))[S| — 0.5 and divide by (7')|S| to derive that

;@ (1‘2<7;1)15|‘(T;>€|S|>+§((5+1 < 57 2 S

~€R

Since this expression is equivalent to the term in the theorem, this completes the proof. [

C. Proofs Omitted from Section 4.3

Proposition 5. The following claims are true:
(1) If a ranking is pair-priceable for a profile, it also satisfies sPJR.
(2) For every profile, there is a pair-priceable ranking.

Proof. We will show both claims independently from each other.

Claim (1): Pair-priceability implies sPJR. Fix a profile R on m candidates and
suppose that > is a pair-priceable ranking for R. Moreover, we denote by .S an arbitrary
subprofile of R and aim to show that [A(>) U, cr. 5()=0 A7) = [S(-)- ("y)]. To this
end, let m denote the payment scheme that verifies the pair-priceability of . By Condition
(4) of pair-priceability, we have that }°, .z >~ (@i,)eA) T 7(>=, (zi,2;)) > () — 1. Since
the total budget of all rankings is (m), this implies that

Z Z (>, (x4, x5)) > (7;1) : Z R(>)—1>19]|- <7;L> .

=€R: S(>)>0 (zj,z;)€A(>) =€R: S(=)>0

Next, by Conditions (1) and (3), each ranking > only pays for pairs (z;,z;) € A(>)
and we can pay at most 1 to each such pair. Put differently, this means that the rankings
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with positive weight in S can only pay for the pairs in A(>) MU, cx. ()50 A(-) and
at most 1 for each such pair. Hence, it holds that

> Yo alm @) <lAe)n U AL

=€R: S(>)>0 (w4,x;)€A(>) =€R: S(>)>0

By combining our two inequalities, we conclude that

15| - (’;) —1<jA) N | AL

=€R: S(>)>0

Finally, since the right side of this inequality is an integer, it follows that [|S|- (})] <
JA(>) NU,er: s()>0 A(-)], thus proving that sPJR holds.

Claim (2): Pair-priceable rankings are guaranteed to exist Fix a profile R
on m candidates. We will construct a pair-priceable ranking in rounds and, in every
round, we will identify a candidate x; such that the cost of the pairs (z;,x) can be
fully covered for all remaining candidates x. To make this more formal, fix some round
i€ {1,...,m—2} and let b;(>) denote the remaining budgets of the rankings and X; the

remaining candidates. In the first round, we have that by () = R(>) - () and X; = C.

We further assume that > . . bi(>) = W, which is true for the first round
by the definition of b;. Now, in the i-th round, we aim to find a candidate x* and a
payment function m; : R x X; \ {z*} — [0,1] such that (4) }° ¢ x,\ (o Ti(>, 2) < bi(>-)
for all = € R, (i) mi(>,z) = 0 for all = € R and =z € X; with z > z*, and (%)
Y v ermi(>=,x) = 1 for all z € X;. We note that the payment scheme 7; can also be
interpreted as a payment scheme for the pairs (z*, x).

For identifying such a candidate z* and the payment scheme m;, we will introduce
domination graphs, which are studied in the context of metric distortion of voting rules
(e.g., Gkatzelis et al., 2020; Kizilkaya and Kempe, 2022, 2023). Specifically, the domination
graph of a candidate z is given by G, = (R, X;, E;), where (>-,y) € E, if and only if
x =y or x =y. Less formally, in the domination graph of x, every ranking > has an edge
to every candidate y € X; \ {x} that is weakly worse than x in >. Our interest in these
domination graphs comes from the ranking-matching lemma shown in the previously
cited papers: for any two functions p : R — Rs_g and g : X; — Rs_g such that
> erP(=) =2 cx, a(x) > 0, there is a candidate z* and a matching p: R x C' — R
in the domination graph G, such that (a) p(>) = > x, p(=,z) for all = € R, (b)
q(r) =)  cpu(>,x) for all = € R, and (¢) p(>,z) =0 for all (-, ) ¢ Ep-. '

Next, let ¢ denote a weight function over the candidates X; given by ¢(z) = ™5*.
We note that g(z) > 1 because we assume that ¢ < m — 2, and that > v g(z) =

w =Y o g bi(>~) because X; contains m—i+1 candidates. Hence, the ranking-
matching lemma shows that there is a candidate z* and a matching u that satisfies the
Conditions (a), (b), and (c¢). Based on u, we define the payment scheme m; for z* by
mi(=,x) = 2 (=, ) for all = € A and z € X; \ {z*}. We next show that m; satisfies

Conditions (7), (i), and (iii) (of the first paragraph). In more detail, Condition (7) holds
because Y- ¢\ () Til(=: %) = Doexi\ (o) 2 (-, x) < Y wex, W=, 7) = bi(x) for
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every ranking >, where the last equality uses Condition (a) of u. Further, Condition (i)
is true because (>, z) € Ey+ if 2 = 2* and thus m;(~, ) = —2-u(>,2) = 0 by Condition
(c) of p. Finally, condition (i) follows since Y-, cp mi(>=,2) = 3, cp 25 p(=,2) =1
for all x € X; \ {z*}, where we use Condition (b) of x in the last step.

After identifying the candidate x* and its payment function m;, we place x* at the
i-th position of our output ranking, set X;11 = X; \ {z*} and b;11(>) = b;(>) —
> pexi\ (o} T(=, @) for all = € R, and proceed with the next round. Since we deduct
a total budget by m — ¢ in this round, the remaining budget in the next round will be
(m—=i)(m—it1) z) m— z+% _ (m—i—1)(m— z)

="—— %0 this precondition of our construction remains

true.

We observe that the above scheme only works when ¢ < m — 2, which leaves open
what to do in the last round. In this case, we will use a simple majority vote over
the last two candidates x,y with respect to the remaining budgets to determine the
winner: if 30 cp. 4oy bm—1(-) > 32 cr. 4oy Om—1(>), we place z at position m—1 of the
output ranking and y at the last position. On the other hand, if ), . oy b—1(>) <
YR - bm—1(>), we place y at position m —1 and x at position m. A majority tie can
be resolved arbitrarily. Furthermore, denote by x* the candidate that is ranked at position
m — ¢ and by y the candidate that is ranked last. We define the payment scheme 7,1 of
this step by mpm—1(>,y) = b;(>) if 2* > y and mp,—1(>,y) = 0if y > x*. We note here also
that b,,—1(>) < 1 for all = € R because >, . bp—1(>) = (m_(m_l))(gb_(m_l)ﬂ) =1

Finally, let > = z1, ..., x, denote the ranking constructed by the above process and
let 7; denote the payment scheme for every step. We define the global payment scheme
m: R x A(>) = [0,1] by 7(>, (x5, ;) = m(>, ;) for all = € R and (x;,x;) € A(>).
We claim that 7 satisfies all conditions of rank-priceability. For Condition (1), we note
for all > € R and (x;,z;) € A(>) that n(>, (z4,2;)) = mi(>,2z;) = 0if z; > z; and
(=, (x5, 25)) < 1if x5 = a; since ), p mi(>=,2;) = 1. Condition (2) follows because
bi (=) = R(>)- () for all = € R and we never increase the budget of a ranking in our
process. Moreover, our budgets are never negative as 7(>, z;) is always upper bounded
by bi(>). Hence, it holds that 3, . ye 4y (-, (24, 25)) < R(-)- ('y) for all rankings .
Condition (3) of rank-priceability holds since ), o 7(>=, (74, 2;)) = > cp (=, 2;) < 1
for all (x;,2;) € A(>). Finally, Condition (4) of rank-priceability is true because the total
remaining budget is at most % In more detail, the remaining budget in the (m — 1)-the
round is (%) — S 2 (m — i) = 1 and we spent at least half of this budget in the last
?tep].% Thus, 30 cr 2w w)ea(e) ™0 (@i, 25)) > ('y) — 1 and 1> is indeed rank—priceab[l;
or R.

Theorem 5. The Flow-adjusting Borda rule is pair-priceable.

Proof. Fix some profile R and let > = x1,...,x, denote the ranking selected by FB.
Further, let b;(>~) denote the budgets of the ranking > in the i-th round and let X; =
{zi,...,xm}. Furthermore, let G, denote the flow network of FB in the i-th round and
fi the maximum flow chosen for G;. We will show that the payment scheme 7 given by
(=, (i, 25)) = fi(vs,vy;) for all = € R and (z;,7;) € A(>) satisfies all conditions of
pair-priceability.
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Condition (1): We first note that 7(>, (z;,z;)) = 0 if 2; > x; because there is no edge
from >~ to x; in the flow network G, in this case. Furthermore, if 2; > x;, it holds that
fi(>=, ;) <1 because the capacity from vz, to the source is 1. Hence, it follows for all
rankings > and pairs of candidates (x;, z;) that 7(>, (z;, z;)) < u(>,z;, {zi, z;}).

Condition (2): This condition is true because bi(>) = R(-) - (%)) for all = € R.
Moreover, we note that b;(>) > 0 for all rankings > and rounds 7 because it is never
possible to decrease the budget of a ranking by more than b;(>~). This is encoded in our
flow network as the capacity from the sink to a ranking vertex vy is b;(>~). Consequently,
we have that Z(mi,zj)eA(|>) (=, (zi,25)) < R(>) - () for all = € R.

Condition (3): It is immediate from the construction of the flow network G, that
> oser (=, (x4, 75)) < 1 for all (x5, 7;) € A because the capacity of the edge from v;; to
the sink ¢ has capacity 1. Hence, it holds for the outflow of x; that f;(vs,,t) <1 which, in
turn, implies that » . . fi(vs-,ve;) < 1. Since Y cp (=, (w4, 75)) = > cr fil>=, 25),
this proves the third condition of pair-priceability.

Condition (4): For this condition, we need to show that the remaining budget after the
execution of the Flow-adjusting Borda rule is less than 1. To this end, we will first show
that for all rounds 7 € {1,...,m — 3}, the maximum flow in G, has value m —i. To show
this, fix such a round ¢ and suppose that our claim is true for all rounds j <. If i =1,
this assumption is true as there were no previous rounds and it will hold inductively for
i > 1. We first note that the total budget in this round is

i—1 m—1i . .
S = S = i)
~€R = =

Next, assume for contradiction that the maximum flow in G,, = (V, E, ¢) has a value
not equal to m — 7. We note that no flow in GG, can have a value of more than m — ¢
because the capacities of all edges pointing to the sink ¢ is ZyEXq;\{zi} c(vy,t) =m —i.
Hence, our assumption means that the maximum flow has a value strictly less than
m — i. By the maximum flow-MinCut equivalence, this means that there is an (s, t)-
cut S = (T,V\T) in Gy, such that 3, ep: verwev\r c(v;w) < m —i. It follows
from this insight that S does not cut any edge connecting a ranking vertex and a
candidate vertex because all of these edges have unbounded capacity. Furthermore, let
Z={y e X;\{xzi}: (vy,t) € TV (vy,t) € V\ T} denote the set of candidates such that
the edge from the corresponding vertex to the sink is not separated by S. We note that
Z # ) because otherwise, S cuts all edges from candidate vertices to the source and thus
has a weight of m — i. Next, let R denote the set of rankings > such that there is an
edge from v, to a candidate vertex v, with y € Z. All edges from the source to the
ranking vertices vy with = € R have been cut as S does otherwise not disconnect s and ¢.
Furthermore, the total cost for cutting these edges is less than |Z| because S would have
a value of at least m — i otherwise. Put differently, there is a set of candidates Z such
that the rankings in R = {~ € R: Jy € Z: z; = y} have a total budget of less than |Z]|.

We will show that this observation contradicts that x; maximizes U (b;, z, X;) when
i > m — 3. To this end, we define by R4~ the set of rankings that prefer all candidates
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in a given set Z to z. Letting z = |Z|, our previous insights show that

Z bi(>) > (m—i)(m—i+1)_z

~ERZm= 2

because Y. cpzs= bi(>)+D . g bi(>) = (m_l)(#ﬂ) Since all rankings in R?” prefer
all candidates in Z to x;, it holds that

> b)) (ul @ Xo) — ul-,y, X - > (=)D g
=1

YEZ ~cRZ> ~cRZ-=
—i+1) ) z(z+1)
— Z ¢ —_—

((m—z‘)(rg :

<_

On the other hand, in the best case, it holds for all rankings = € R with b;(>=) > 0
that x; is top-ranked and the candidates in Z are bottom-ranked. As the maximal Borda
score with m — i 4+ 1 candidates is m — i, we derive that

ZZ() u(-, i, Xi) —u(=,y, X Zb Z —i+1—2)

YEZ ~cR ~cR i=1

<z-<(m—i—|—1)z—z(z2+1)>.

Finally, since z; maximizes ) |, . b;(=)u(>, z;, X;), it holds that D . 5 b;(>)u; (-, z, X;) >
Y er bi(=)u(~,2,X —i) for all z € Z. By summing up over the candidates in Z, we
hence get that

ZZb u(>, xi, Xi) —u(>,y, X))

yeZ ~€R
—Z Z b >‘xu Z)—u>y, +Zzb >'331v 1)_u(>'7y’Xi))
YEZ ~cRZr® YEZ -€R
—1 —1+1 1 1
o[t W; ST >+z<<m_¢+1>z_z<z;>>

(m—i)(m—i+1)z(z+1)

=(m—i+1)2%—

(m—i+1)z 1

— 1
=(m—i+1)z (Z_(mz)(z—l—)>
4

Now, if ¢ < m — 4 and thus m — i > 4, it is clear that z — % < 0, thus
showing that z; cannot be the Borda winner. Next, if i = m — 3, we have that
z — % =z — w = % — % < 0 because z < 3 if only four candidates are

remaining. Combined with our previous inequality, we get a contradiction to the fact
that x; maximizes the Borda score. This shows that our initial assumption is wrong and
there is indeed a maximum flow of value m — ¢ when i € {1,...,m — 3}.
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By our analysis so far, we conclude that the total budget > . . bi(>) =3 if i = m — 2.
Furthermore, we note that we are left with three candidates X,,—o = {&m—2, Tm—1,Tm}
when ¢ = m — 2. We will next prove that, in this round, the budget decreases by at least
1.5. Assume for contradiction that this is not the case and consider again a maximum
flow fp,—2 in our flow network G, ,. Our assumption means that the value of f,,_2 is
less than 1.5. Now, first suppose that fr,—2(vg,, ,,t)) < 1 and fr—2(vg,,,t)) < 1, ie.,
the outflow of both candidate vertices is less than the capacity of these edges. Since
fm—o is a maximum flow, this means that the capacity for all edges from the sink to the
ranking vertices v. for rankings such that z,,_o > x;,_1 or T,,_9 = T, is exhausted.
Moreover, since the value of f,;,—o is less than 1.5, this means that the total budget of
these rankings is less than 1.5. Next, it holds that u(zy,—2, =, X;n—2) < 2 for all rankings
>, so we derive that U(by,—2, Tm—2, X;m—2) < 3. However, it is simple to compute that
Y eeX, o 2umer bm—2(=)u(=, 2, Xm_2) =9, so there is a candidate with a total Borda
score of at least 3, thus contradicting that x,,_o maximizes this score.

For the second case, we assume without loss of generality that f,,—2(v,,, ,t) = 1. This
implies that fp,—2(vg,, ,,t) < 0.5 since the inflow of ¢ equals the value of fy,_2. Now,
suppose there is a ranking > such that b,,_2(>) > 0 and z,,_2 is top-ranked in >. If
fm—2(ve, vy, ) > 0, we can redistribute the flow from this edge to (vs,vs,, ,) without
reducing the value of f,,_o. Hence, this gives us another maximum flow and the insights of
the previous paragraph yield a contradiction. Thus, we conclude that f,,—2(ve,v; ) =0
for all rankings > in which z,,_o is top-ranked. Using again the maximality of fy,—o,
this means that the total budget of rankings > with x,;,,_2 > z,,—1 is less than 0.5 as
we could otherwise increase the flow through x,, 1. We will show that this means that
ZTy—1 has a higher Borda score than x,, 5. For this, we observe that the rankings > with
Tm—2 > Tym—1 give at most two points more to x,,—o than to x,,—1, whereas every other
ranking gives at least one more point to z,,_1 than to x,,_o. Thus, we conclude that

U(bmf% Tm—2, me2) - U(bm72a Tm—1, me2)

<2 Z bm—2(>) — Z bm—2(>)

=ER: Tim—2>Tm—1 =ER: Tm_1>Tm—2
<2-05—-25
< 0.

This is again a contradiction to the fact that z,,—o maximizes U (b;, z, X;,—2), so we get
that we indeed reduce the total budget by at least 1.5. Hence, the remaining budget for
the last round is at most 3 — 1.5 = 1.5

Finally, in the last round, the candidate maximizing U (by,—1, 2, X;m—1) is simply the
winner of the majority vote between x,, 1 and z,,. It is thus straightforward that we
reduce the total budget by at least half, so we end up with a budget of at most %. This
proves the last condition of pair-priceability. O
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Theorem 6. Let R be a profile on m candidates and 1> = FB(R) the ranking chosen by
the Flow-adjusting Borda rule. It holds for every subprofile S of R that

1 m\ |S| 3
5 Z S(=)u(=,>) > <2> 116

~€R

Proof. Fix a profile R and let > = x1, ..., z,, denote the ranking chosen by FB. We will
closely follow the proof of Theorem 2 and thus define by b;(>) the budget of ranking > in
the 4-th round of the Flow-adjusting Borda rule. In particular, by (>) = R(>) - (') for all
rankings >~ € R. Furthermore, let f; denote the maximum flow chosen in the ¢-th round

of FB and define the cost per utility ratio p; by max, er. p,(>)>0 bA(H.u(fS’v{;)_ D

Lastly, we will throughout the proof assume that 8 = 0 to avoid trivial corner cases.

We will show this theorem in two steps. First, we will show that p; < m
alli e {1,...,m —3}, pm—2 <1, and p;,—1 < 1. Based on this insight, we will prove the
theorem in a second step.

for

Step 1: We start by showing our upper bounds on p;. To this end, we fix a round ¢
and let G, = (V, E, ¢) denote the flow network used by FB in this round. It holds for
every ranking > that f;(s,v.) < b;(>) since ¢(s,v.) = b;(>). Hence, we derive that
bi(>)~u(f,(;¢ﬁ[;z,...,xm}) < u(h%{;ﬂ“,xm}) < 1if u(>, 2, {®i,...,Zm}) > 0. On the other,
if u(>,x;, {i,...,xm}) =0, then > bottom-ranks z; among {z;,...,x,}. Thus, > has
no outgoing edge in G, and f(s,v.-) = 0. This implies that bi(>‘)’U(>f‘i7($si7jj{zzp--,mm}) =0
if wi(>-, x4, {xi,...,xm}) = 0 (or, put differently, we can ignore > as it does not pay
anything in this case). It follows that p; < 1 for all rounds 4, thus proving our upper
bounds for p,,—2 and pm—1.

Next, we suppose that ¢ € {1,...,m — 3} and aim to show that % <

WTH)' To this end, we will prove that the flow network G, admits a flow f* with
value m — i such that f'(s,v.) < 4bi(>()mu(_>i3:€;;‘{_ac;jr"l'sz"L}) for all = € R. For this, consider

the modified flow network G’, = (V, E, ¢’), which uses the same vertices and edges as G,
but has different capacities. Speciﬁcally, we set (s,ve) = bi(>) - u(>, 2, {2y ..., Tm})
for all ranking vertices, ¢(v., v;) is still unbounded for all rankings > and candidates
x with z; = x, and (v, t) = W for all candidates z € {zjt1,...,2m}. We
will show that G7,. permits a flow f; of value le Based on f!, we will then

define the flow f by f’(e) = nf{;é (f)l) for all e € E. We claim that f;* is feasible for G,

. i (sv) 4
and satisfies that bi(>)~u(>,w¢,{;iw,rm}) < s m=ir D)

we observe for every edge e € E that f*(e) = (m_;l){i(@e_)iﬂ) < (m—f)c(irgzezi—i-l) < c(e).
In more detail, for the edges from candidates vertices v, to the sink ¢, this holds as
(vg,t) = w and c(vg,t) = 1. For edges from the source s to ranking vertices
vy, our claim holds as (mf';/)((f;lvji)ﬂ) = 4b1(>(2r:‘£:)(3;;l£f;1)$"‘} < bi(>) = ¢(s,vs). For the
second step, we use that u(>,z;, {x;,...,zm}) < m — i and that 4 < m —i+ 1 as

for all = € R. For the feasibility,
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i <m — 3. Furthermore, it holds by definition that f(z,v.) < 4b1(>()mu(_>z)f;n{_x;+1)xm} ) for
fz* (S,U>)

4
Wl )) S Gy or all = € R.
Now, we assume for contradiction that our modified flow network G, does not permit

all ranking >, so e

(m—i)

2 .
a flow of value %. By the maximum flow-MinCut equivalence, this means that

there is an (s, t)-cut (T, V\T) in G’,. whose total weight is less than w Let Z
denote the set of candidates for which the candidate vertex is not separated from the sink
by (T, V\T), i.e., Z is the set of candidates x such that v, € T if and only if ¢ € T". Since

there are (m — i) candidate vertices and all edges (v, t) have a weight of W,

we derive that Z # () as (T, V \ T') would have a value of at least w otherwise.
Moreover, (T, V \ T') cannot disconnect any edge from a ranking node to a candidate
node as these have unbounded capacity. Finally, let R denote the set of rankings > such
that (ve,v,) € E for a candidate x € Z. All edges from the sink to the ranking vertices
vy for = € R must be disconnected as there is otherwise still a path from s to ¢ in G;i.

Moreover, the total capacities of these edges is less than |Z |W Otherwise, the

weight of (T,V \ T) is at least w because we cut (m —i — |Z|) edges from
candidate vertices to the sink, each of which has a weight of W

In summary, this analysis shows that there is a set of candidates Z C {x;11,...,zn}
such that > . 5 bi(>=)u(>=, x5, {zi, ..., 2m}) < zw, where z = |Z| and R =
{-€R:3y € Z: z; = y}. We will show that this contradicts with the fact that z;
maximizes the U(b;, i, {xi, ..., 2m}. To this end, let o = >, 5 b;(>~) and first assume
that ¢ > w Because each ranking = € R\ R prefers all candidates in Z to z;,
x; receives a score of at most m — z — i from each of these rankings. Since we have shown
in the proof of Theorem 5 that the total remaining budget is Z> R bi(>) = W,
this means that > .z bi(=)u(>, zi, {zi, ..., 2m}) < (w —@)(m — z — ).
Combined with the assumption that ). 5 bi(=)u(>, z;, {zi, ..., om}) < ZW#‘—H),
we now derive that

Z bi(>_)ui(>'> L, {xia s >$m})

-ER
= Y bi(-)ul=z,C)+ Y bi(=)u(-,z,C)
=ER\R =-€R
(DL N PRSP UESES
< (m—i)z(m—z’—i—l)'
- 4
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In the last step, we use that ¢ > W and thus W—«p < W
We next note that the average Borda score with respect to b; is

1 m—i ‘
T — Z Zb u(=,y, {xi,. .., xm}) = Zb )Zj
m—1i+1 Z_|_1 .

ye{wh 7wm} ~€R ~-ER 7=0
(m—i)2(m—i+1)
1 .

However, this means that there is a candidate y with ) . bi(=)u(>=,y, {zs, ..., 2m}) >

MI—WFHD > U(>=, x4, {xi,...,xm}), which contradicts that x; is selected by FB in
this step.

As the second case, suppose that ¢ < W. Since x; maximizes the total Borda
score with respect to x;, it holds for every candidate y € Z that

0< Zb u(>=, i, {iy .-y xm}) —ul=,y,{xi, ..., zm}))

~-€R

+ > b)) wlz {zwm)) = uC g {2 )).

~€R\R
This implies further that

0< - ZZ() u(=, i, {ziy .., xm}) —u(=y,{zi, ..., 2m}))

>eRy€Z

—|—7 Z Zb >x“{x“,,.,xm})—u(%,y,{xi,...,l’m}))'

>e72\72 yez

Equivalently, this means that

Zb u(=, wi, {xiy .. em}) > Zzb u(>, Yy, {zi,. .., Tm})

~cR >ER yeZ

_|_, Z Zb u(>=,y,{zi,...,2m}) —u(=, i {xi ..., Tm}))-

>e72\72 yez

Next, since >, u(>,y, {i, ..., zm}) = Z;;éj for every ranking >, it follows that

,Zzb (- g, (i .. ,xm})zézm(>)2j:¢z;1.

~CRYEZ ~-ER Jj=0

Furthermore, every ranking = € R \ R ranks all candidates in Z ahead of x;, so
> oyez =y AT am}) —u(=, m, {@i, . o)) > D07 j for each = € R\ R. Based
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on this insight and the fact that ) _ bi(>) = W, we compute that

Z Zb u(=,y,{ziy. .., xm}) —ul=, zi, {xi, ..., Tm}))

»eR\R yez

2% Z bi(HZJ'

=ER\R Jj=1

:1<(m_1)< m_it1) > Z i1 =) —2(m—i—2)

z 2

j=1
_ <<m—i><rg—i+1>_¢>,<(m_i+1)_z—;1>_<<m—z‘><n;—i+1> _w> i)

Putting our inequalities together, this means that

Zb >‘ xz,{xz,-“;xm})

;GZZ;1+<<m—z)(T;—¢+1)_(P>_<(m_i+1)_z;1>
_((m—i)(?;z—i—kl)_(p)(m_l_z)
:<m—z><rg—i+1> z;1+<<m—i><2—z+1>_@>.( —it1-2)
C(mmim—ik) N
<m<z>< oo zuzw@ﬂmi“w)
2 2 2
m(m_l)z.

m(m 1)

Here, the last inequality follows by using that ¢ < . This directly disproves the

assumption that >,z bi(=)u(>, i, {zi, ..., 2m}) < Wz, so we also showed our
claim in this case.

Step 2: We are now ready to prove the theorem and thus fix an arbitrary subprofile S
of R. We will closely follow the proof of Theorem 2 and thus define b7 (=) = i((:.)) bi(>-) =

S(=)- (%) for all i € {1,...,m} and = € R. Next, we let ¢ (=) = b7 (=) — b, (>)
denote the payment made by the ranking > with respect to its budget in S and by
= R G 9(~) the total payment made by the subprofile S in the i-th round.

NOW fix around ¢ € {1,...,m — 1} in the execution of the Flow-adjusting Borda rule.
We first observe that for every ranking >, it holds that b;(>) — bi+1(>=) = fi(>) as the
computed flow determines the payment. Furthermore, by the definition of p;, we have that

fz(sv ) ( ) (> xz:{zza 7xm})
bi(>)~u(>,xi,{;i7--.,xm}) < pi. Equivalently, this means that A > pl By
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combining our insight, it follows that b;(>) - u(>, x;, {zi, ..., zm}) > W. Fur-

thermore, by multiplying both sides with S%% we get that b (=) -u(>=, zs, {Tiy. .., Tm}) >

i ()
o

(3

. Finally, summing over all the rankings >~ € R, we conclude that

< Z by (=)u(=, zi, {21, ...y Tm}) < Z by (=)u(=, 24, {x1, . ., T }).

=€R -€R

Moreover, by summing over all rounds i € {1,...,m — 1}, we infer that

Ji< Z > () ul- mi {miy ) = > 07 (- )u(-, ).

i=1 i=1 =R ~€R

In turn, our upper bounds on p; proven in Step 1 show that

m—3 ~g . ;
A _ —1+4+1 )u(>=,>
C2(m Z)im G ) 0;791 2_|_C;?;_1< E biq( Ju(=,1>).
= ~ER

i

Next, let C' = 22_11 CiS denote the total payments made by S and note that C' >
> cr b7 (=) — 2 because we have shown in the proof of Theorem 5 that the total
remaining budget of FB is at most %. Moreover, let k denote the largest integer such that

C > (kH) Now, since the coefficients of our sum are weakly decreasing as i increases,
we mlmmlze this term by assuming that C' is only distributed at the late payments.
However, in each round i, it is only possible to pay at most m — i. Hence, the left-hand
sum of the above inequality is minimized if Cy,,—; =m —iforalli e {m —1,...,m — k}
and Cp_p—1 = C — @

We next proceed with a case distinction regarding C' (resp. k) and first suppose that
C < 3. In this case, we have in the worst-case that C’ZS =0forallie{l,...,m— 3},
so we can simplify our inequality to C' < >, % by (=)u(>,>). Further, by using that
C >8] (%) — 2 and dividing by |S| - ('), this means that

3 ERNCONE < S
L (1) 18] < 5] (2) > b2 = 1 D S

~€R =R

Now, we first note that the bound of the theorem is trivial if [S| < 3 - (’;)_1 because

then (7;) . % — 13—6 < 0. We hence assume that |S| > %. Moreover, our assumption that
C < 3 implies that |S| < 3+ 2. We will now show that for all these values of | S| that

(M- Bl_3 g3 3
2 4 16 — 2m(m—1)-1S|" 2m(m—1)-15|
multiplying with 16|S] - ("21), we infer that this is equivalent to

(5 (5o

o6

By subtracting 1 — form both sides and



It can now be checked that 4() ) IS —=19(%)[S| + 12 = 0 if |S| = (m)_l or |S| =
4(2")_1. As a quadratic function grows from its minimum, this proves our inequality for
%(73)_1 <[5 <3+ %)(ZL)_I, as required.

As the second case, suppose that C' > 3 and thus k£ > 2. In this case, we have that

m—3 _ k(k+1) m—(m—k— m—(m—k—
1r24 Y (m—k)(m—f)(m—kJrl)Jr(C 5 ) (m —( k‘41))( (m—-k-1)+1)

i=m—~k

JCS(m —i)(m —i+1)
<cs s :
cs_ +C5 2+§ T

=1

223+112 7

Moreover, since =5 T 5, we can rewrite the left side of this inequality by

mzl (m—k)(m—k)(m—k+1)+(0—@)(m—(m—k—1))(m—(m—k—1)+1) 1

4 4 4 2
i=m—k

_ﬁiﬂu+1x+«?—“@”xh+nw+a>_1
_izl 4 4 2

Next, let £ = C — % As noted in the proof of Theorem 2, it holds that

Mw

P24 1) + €k + 1) (k +2)

=1

kKt k3 3Kk
—Z+?+T+6+E(k+l)(k+2)

ko 2k k2 Bk k
<4 +T+Z+£k(k‘+ ))+£(l€+1)>+<3+2+6—|—£(k‘+1)>

Now, we first note that £ < k + 1, so £(k + 1) > ¢2. Further, as k > 2, it holds that
% + % > %2 +1 and k2 > k(kTH) Hence, we derive that

i Kokd k2
S P+ 1) Lk +1)(k+2) (4—|——|—+€k(k+1))+€2>+(k2+1+€(k+1))
=1
1) 2 1
> (M )+(’“<"’;>+4)+2
=C(C+1)+

Substituting this into our original inequality shows that % < B ul-, ).
Finally, from here on, we can complete the proof analogously to the proof of Theorem 2.
O
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